

MachXO Family Data Sheet

Version 01.0, July 2005

MachXO Family Data Sheet Introduction

July 2005 Advance Data Sheet

Features

■ Non-volatile, Infinitely Reconfigurable

- Instant-on powers up in microseconds
- Single chip, no external configuration memory required
- Excellent design security, no bit stream to intercept
- · Reconfigure SRAM based logic in milliseconds
- SRAM and non-volatile memory programmable through JTAG port
- Supports background programming of non-volatile memory

■ Sleep Mode

Allows up to 100x static current reduction

■ TransFRTM Reconfiguration (TFR)

· In-field logic update while system operates

■ High I/O to Logic Density

- 256 to 2280 LUT4s
- 73 to 271 I/Os with extensive package options
- Density migration supported
- Lead free/RoHS compliant packaging

■ Embedded and Distributed Memory

- Up to 27 Kbits sysMEM™ Embedded Block RAM
- Up to 7.7 Kbits distributed RAM
- Dedicated FIFO control logic

■ Flexible I/O Buffer

- Programmable sysIO[™] buffer supports wide range of interfaces:
 - LVCMOS 3.3/2.5/1.8/1.5/1.2
 - LVTTL
 - PCI
 - LVDS, Bus-LVDS, LVPECL, RSDS

■ sysCLOCK[™] PLLs

- Up to two analog PLLs per device
- · Clock multiply, divide and phase shifting

■ System Level Support

- IEEE Standard 1149.1 Boundary Scan, plus ispTRACY™ internal logic analyzer capability
- · Onboard oscillator
- Devices operate with 3.3V, 2.5V, 1.8V or 1.2V power supply
- IEEE 1532 compliant in-system programming

Introduction

The MachXO is optimized to meet the requirements of applications traditionally addressed by CPLDs and low capacity FPGAs: glue logic, bus bridging, bus interfacing, power-up control and control logic. The devices do this by bringing together on a single chip the best features of CPLD and FPGA devices.

Table 1-1. MachXO Family Selection Guide

Device	LCMXO256	LCMXO640	LCMXO1200	LCMXO2280
LUTs	256	640	1200	2280
Dist. RAM (Kbits)	2.0	6.1	6.4	7.7
EBR SRAM (Bits)	0	0	9216	27648
Number of EBR SRAM Blocks (9 Kbits)	0	0	1	3
V _{CC} Voltage	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V	1.2/1.8/2.5/3.3V
Number of PLLs	0	0	1	2
Max. I/O	78	159	211	271
Packages	•			
100-pin TQFP (14x14 mm)	78	74	73	73
144-pin TQFP (20x20 mm)		113	113	113
100-ball csBGA (8x8 mm)	78	74		
132-ball csBGA (8x8 mm)		101	101	101
256-ball fpBGA/ftBGA (17x17 mm)		159	211	211
324-ball ftBGA (19x19 mm)				271

Lattice Semiconductor

The devices use look-up tables (LUTs) and embedded block memories traditionally associated with FPGAs for flexible and efficient logic implementation. Through non-volatile technology the devices provide the single-chip, high-security, instant-on capabilities traditionally associated with CPLDs. Finally, advanced process technology and careful design provides the high pin-to-pin performance also associated with CPLDs.

The ispLEVER® design tools from Lattice allow complex designs to be efficiently implemented using the MachXO family of devices. Synthesis library support for MachXO is available for popular logic synthesis tools. The ispLEVER tools use the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the MachXO device. The ispLEVER tool extracts the timing from the routing and back-annotates it into the design for timing verification.

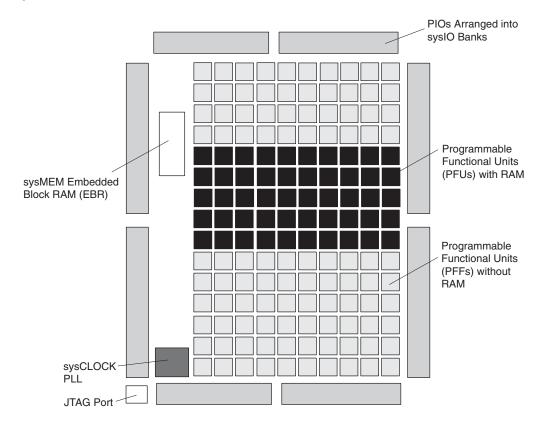
MachXO Family Data Sheet Architecture

July 2005 Advance Data Sheet

Architecture Overview

The MachXO family architecture contains an array of logic blocks surrounded by Programmable I/O (PIO). Some devices in this family have sysCLOCK PLLs and blocks of sysMEM™ Embedded Block RAM (EBRs). Figures 2-1, 2-2 and 2-3 show the block diagrams of the various family members.

The logic blocks are arranged in a two-dimensional grid with rows and columns. The EBR blocks are arranged in a column to the left of the logic array. The PIOs are located at the periphery of the device, arranged into banks. The PIOs utilize a flexible I/O buffer referred to as a sysIO interface that supports operation with a variety of interface standards. The blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.


There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and the Programmable Functional unit without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for flexibility, allowing complex designs to be implemented quickly and effectively. Logic blocks are arranged in a two-dimensional array. Only one type of block is used per row.

In the MachXO family, the number of banks vary by device. There are different types of I/O Buffers on different banks. See detail in later sections of this document. The sysMEM EBRs are large, dedicated fast memory blocks; these blocks are found only in the larger devices. These blocks can be configured as RAM, ROM or FIFO. FIFO support includes dedicated FIFO pointer and flag "hard" control logic to minimize LUT use.

The MachXO architecture provides up to two sysCLOCK™ Phase Locked Loop (PLL) on larger devices. These blocks are located at either end of the memory blocks. These PLLs have multiply, divide and phase shifting capabilities; they are used to manage the phase relationship of the clocks.

Every device in the family has a JTAG Port that supports programming and configuration of the device as well as access to the user logic. The MachXO devices are available for operation from 3.3V, 2.5V, 1.8V and 1.2V power supplies, providing easy integration into the overall system.

Figure 2-1. Top View of MachXO1200 Device1

1. Top view of MachXO2280 device is similar but with higher LUT count, two PLLs and three EBR blocks.

Figure 2-2. Top View of MachXO640 Device

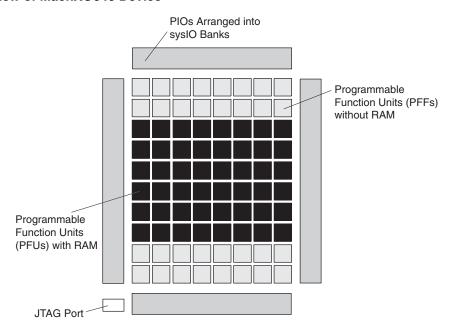
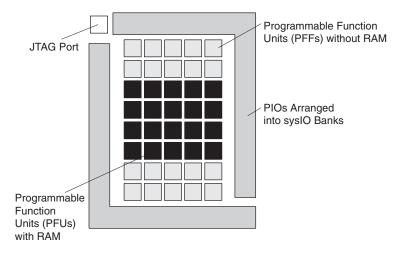
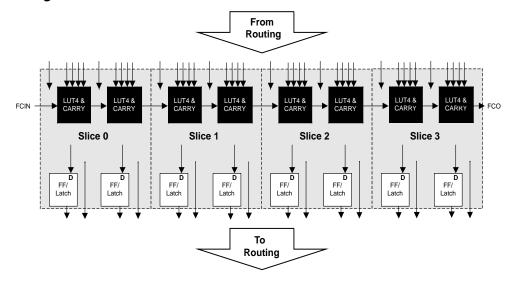



Figure 2-3. Top View of MachXO256 Device

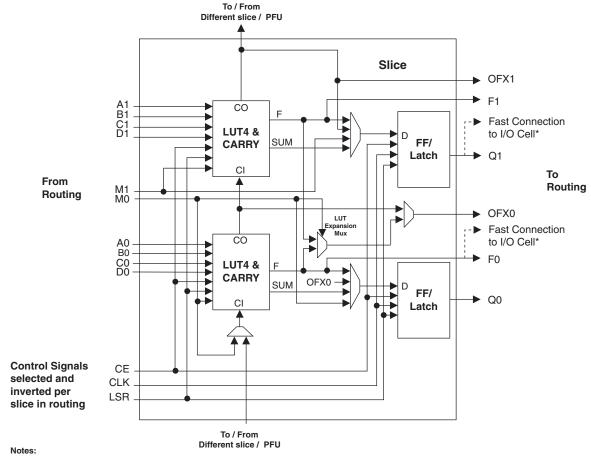


PFU Blocks

The core of the MachXO devices consists of PFU and PFF blocks. The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remainder of this data sheet will use the term PFU to refer to both PFU and PFF blocks.

Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-4. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.

Figure 2-4. PFU Diagram



Slice

Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock select, chip-select and wider RAM/ROM functions. Figure 2-5 shows an overview of the internal logic of the slice. The registers in the slice can be configured for positive/negative and edge/level clocks.

There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU). There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated with each slice.

Figure 2-5. Slice Diagram

Some interslice signals are not shown.

^{*} Only PFUs at the edges have fast connection to I/O cell.

Table 2-1. Slice Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	A0, B0, C0, D0	Inputs to LUT4
Input	Data signal	A1, B1, C1, D1	Inputs to LUT4
Input	Multi-purpose	MO	Multipurpose Input
Input	Multi-purpose	M1	Multipurpose Input
Input	Control signal	CE	Clock Enable
Input	Control signal	LSR	Local Set/Reset
Input	Control signal	CLK	System Clock
Input	Inter-PFU signal	FCIN	Fast Carry In ¹
Output	Data signals	F0, F1	LUT4 output register bypass signals
Output	Data signals	Q0, Q1	Register Outputs
Output	Data signals	OFX0	Output of a LUT5 MUX
Output	Data signals	OFX1	Output of a LUT6, LUT7, LUT8 ² MUX depending on the slice
Output	Inter-PFU signal	FCO	For the right most PFU the fast carry chain output ¹

^{1.} See Figure 2-4 for connection details.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SP 16x2	ROM 16x1 x 2
PFF Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	N/A	ROM 16x1 x 2

Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables (LUT4). A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.

Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- · Addition 2-bit
- Subtraction 2-bit
- Add/Subtract 2-bit using dynamic control
- Up counter 2-bit
- Down counter 2-bit
- Ripple mode multiplier building block
- · Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Two additional signals: Carry Generate and Carry Propagate are generated per Slice in this mode, allowing fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x2-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

^{2.} Requires two PFUs.

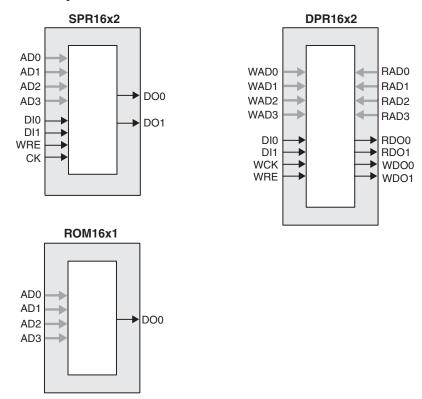

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Figure 2-6 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices. One Slice functions as the read-write port, while the other companion Slice supports the read-only port. For more information on RAM mode in MachXO devices, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2
Number of Slices	1	2

Note: SPR = Single Port RAM, DPR = Dual Port RAM

Figure 2-6. Distributed Memory Primitives

ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

PFU Modes of Operation

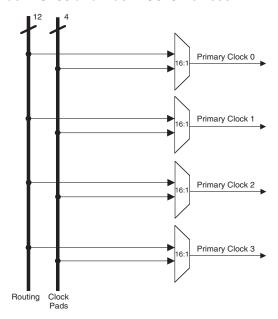
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the functionality possible at the PFU level.

Table 2-4. PFU Modes of Operation

Logic	Ripple	RAM	ROM
LUT 4x8 or MUX 2x1 x 8	2-bit Add x 4	SPR16x2 x 4 DPR16x2 x 2	ROM16x1 x 8
LUT 5x4 or MUX 4x1 x 4	2-bit Sub x 4	SPR16x4 x 2 DPR16x4 x 1	ROM16x2 x 4
LUT 6x 2 or MUX 8x1 x 2	2-bit Counter x 4	SPR16x8 x 1	ROM16x4 x 2
LUT 7x1 or MUX 16x1 x 1	2-bit Comp x 4		ROM16x8 x 1

Routing

There are many resources provided in the MachXO devices to route signals individually or as buses with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.


The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU). The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and x6 resources are buffered allowing both short and long connections routing between PFUs.

The ispLEVER design tool takes the output of the synthesis tool and places and routes the design. Generally, the place and route tool is completely automatic, although an interactive routing editor is available to optimize the design.

Clock/Control Distribution Network

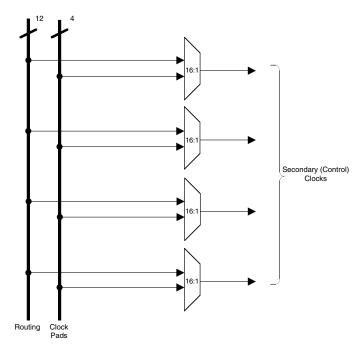
The MachXO family of devices provides global signals: four primary clocks and four secondary clocks. Primary clock signals are generated from four 16:1 muxes as shown in Figure 2-7 and Figure 2-8. The available clock sources for the MachXO256 and MachXO640 devices are four dual function clock pins and 12 internal routing signals. The available clock sources for the MachXO1200 and MachXO2280 devices are four dual function clock pins, six internal routing signals and up to six PLL outputs.

Figure 2-7. Primary Clocks for MachXO256 and MachXO640 Devices

Up to 9
4
Primary Clock 0

16:1
Primary Clock 1

16:1
Primary Clock 2


Primary Clock 2

Routing Clock PLL
Pads Outputs

Figure 2-8. Primary Clocks for MachXO1200 and MachXO2280 Devices

Four secondary clocks are generated from four 16:1 muxes as shown in Figure 2-9. Four secondary clock sources come from dual function clock pins and 12 from internal routing.

Figure 2-9. Secondary Clocks for MachXO Devices

sysCLOCK Phase Locked Loops (PLLs)

The MachXO1200 and MachXO2280 provide PLL support. The PLL clock input, from pin or routing, feeds into an input clock divider. There are four sources of feedback signals to the feedback divider: from CLKINTFB (internal feedback port), from the global clock nets, from output of the post scalar divider and from the routing or from an external pin. There is a PLL_LOCK signal to indicate that the PLL has locked on to the input clock signal. Figure 2-10 shows the sysCLOCK PLL diagram.

The setup and hold times of the device can be improved by programming a delay in the feedback or input path of the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after adjustment and not relock until the t_{LOCK} parameter has been satisfied. Additionally, the phase and duty cycle block allows the user to adjust the phase and duty cycle of the CLKOS output.

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.

Figure 2-10. PLL Diagram

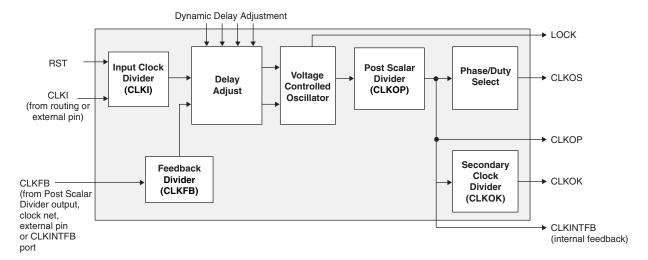


Figure 2-11 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.

Figure 2-11. PLL Primitive

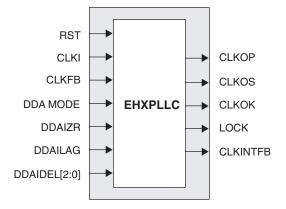


Table 2-5. PLL Signal Descriptions

Signal	I/O	Description
CLKI	I	Clock input from external pin or routing
CLKFB	I	PLL feedback input from PLL output, clocknet, routing, external pin or internal feedback from CLKINTFB port
RST	I	"1" to reset input clock divider
CLKOS	0	PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP	0	PLL output clock to clock tree (No phase shift)
CLKOK	0	PLL output to clock tree through secondary clock divider
LOCK	0	"1" indicates PLL LOCK to CLKI
CLKINTFB	0	Internal feedback source, CLKOP divider output before CLOCKTREE
DDAMODE	I	Dynamic Delay Enable. "1" Pin control (dynamic), "0": Fuse Control (static)
DDAIZR	I	Dynamic Delay Zero. "1": delay = 0, "0": delay = on
DDAILAG	ı	Dynamic Delay Lag/Lead. "1": Lag, "0": Lead
DDAIDEL[2:0]	ı	Dynamic Delay Input

For more information on the PLL, please see details of additional technical documentation at the end of this data sheet.

sysMEM Memory

The MachXO1200 and MachXO2280 devices of the MachXO family contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9-Kbit RAM, with dedicated input and output registers.

sysMEM Memory Block

The sysMEM block can implement single port, dual port, pseudo dual port or FIFO memories. Each block can be used in a variety of depths and widths as shown in Table 2-6.

Table 2-6. sysMEM Block Configurations

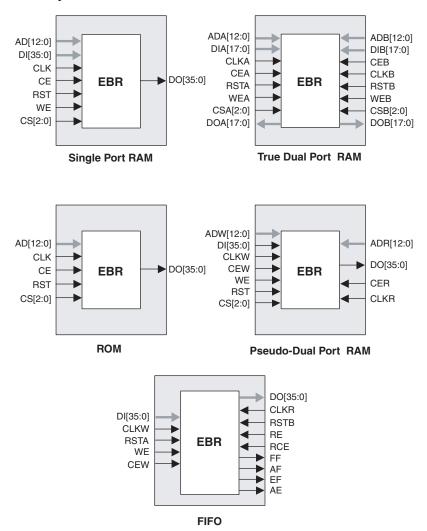
Memory Mode	Configurations
	8,192 x 1
	4,096 x 2
Single Port	2,048 x 4 1,024 x 9
	512 x 18
	256 x 36
	8,192 x 1
	4,096 x 2
True Dual Port	2,048 x 4
	1,024 x 9
	512 x 18
	8,192 x 1
	4,096 x 2
Pseudo Dual Port	2,048 x 4
Goddo Buai i oit	1,024 x 9
	512 x 18
	256 x 36
	8,192 x 1
	4,096 x 2
FIFO	2,048 x 4
	1,024 x 9
	512 x 18
	256 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.


Memory Cascading

Larger and deeper blocks of RAMs can be created using EBR sysMEM Blocks. Typically, the Lattice design tools cascade memory transparently, based on specific design inputs.

Single, Dual, Pseudo-Dual Port and FIFO Modes

Figure 2-12 shows the five basic memory configurations and their input/output names. In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output.

Figure 2-12. sysMEM Memory Primitives

The EBR memory supports three forms of write behavior for single or dual port operation:

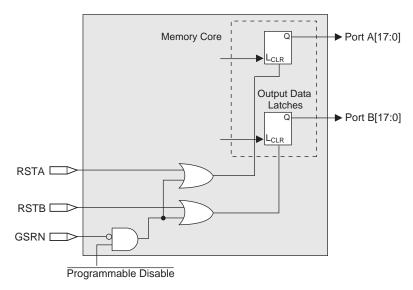
- 1. **Normal** data on the output appears only during the read cycle. During a write cycle, the data (at the current address) does not appear on the output. This mode is supported for all data widths.
- 2. **Write Through** a copy of the input data appears at the output of the same port. This mode is supported for all data widths.
- 3. **Read-Before-Write** when new data is being written, the old contents of the address appears at the output. This mode is supported for x9, x18 and x36 data widths.

FIFO Configuration

The FIFO has a write port with Data-in, CEW, WE and CLKW signals. There is a separate read port with Data-out, RCE, RE and CLKR signals. The FIFO internally generates Almost Full, Full, Almost Empty and Empty Flags. The Full and Almost Full flags are registered with CLKW. The Empty and Almost Empty flags are registered with CLKR. The range of program values for these flags are in Table 2-7.

Table 2-7. Programmable FIFO Flag Ranges

Flag Name	Programming Range
Full (FF)	1 to (up to 2 ^N -1)
Almost Full (AF)	1 to Full-1
Almost Empty (AE)	1 to Full-1
Empty (EF)	0


N = Address bit width

The FIFO state machine supports two types of reset signals: RSTA and RSTB. The RSTA signal is a global reset that clears the contents of the FIFO by resetting the read/write pointer and puts the FIFO flags in initial reset state. The RSTB signal is used to reset the read pointer. The purpose of this reset is to retransmit the data that is in the FIFO. In these applications it is important to keep careful track of when a packet is written into or read from the FIFO.

Memory Core Reset

The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A and Port B respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-13.

Figure 2-13. Memory Core Reset

For further information on the sysMEM EBR block, see the details of additional technical documentation at the end of this data sheet.

PIO Groups

There are two groups of PIO blocks in the banks of the MachXO family devices. One group with six PIOs that are connected to their respective sysIO buffers, are on the top and bottom banks. The other group with four PIOs that are connected to their respective sysIO buffers are on the left and right banks. The sysIO buffers are connected to their respective PADs.

In both groups, two adjacent PIOs can be joined to provide a complementary I/O pair (labeled as "T" and "C"). The PAD Labels "T" and "C" distinguish the two PIOs. The adjacent PIOs on all four sides on the MachXO1200 and MachXO2280 devices are differential receivers. Half of the PIO pairs on the left and right Banks of the two larger devices, MachXO1200 and MachXO2280, can be configured as LVDS transmit/receive pairs. The rest of the PIOs are single-ended buffers with complementary I/O capability. In addition, the top banks of the MachXO1200 and MachXO2280 devices provide PCI support.

Figure 2-14. Group of Four Programmable I/O Cells

This structure is used on the left and right of MachXO devices

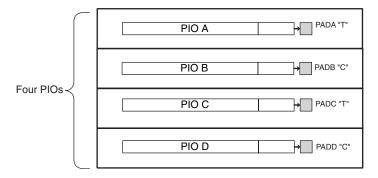
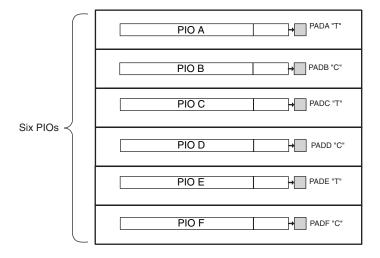
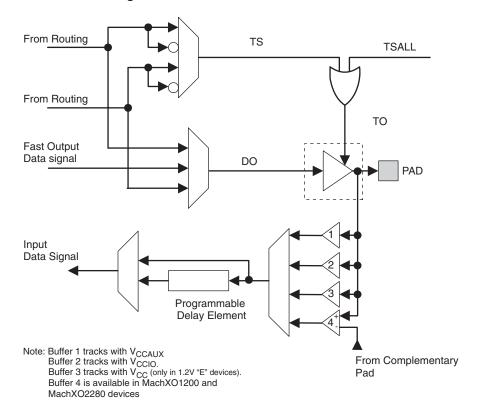



Figure 2-15. Group of Six Programmable I/O Cells

This structure is used on the top and bottom of MachXO devices


PIO

The PIO block provides the interface between the sysIO buffer and the internal PFU array blocks. These blocks receive output data from the PFU array and a fast output data signal from adjacent PFUs. The output data and fast output data signals are multiplexed and provide a single signal to the I/O pin via the sysIO buffer. Figure 2-16 shows the MachXO PIO logic.

The PIO block supports output enable signals for tristate control. By multiplexing the two output data signals and their complements this tristate control signal is generated. In addition a global signal TS (TSALL) from a dedicated pad can be used to tristate the sysIO buffer.

The PIO receives an input signal from the pin via the sysIO buffer and provides this signal to the core of the device. In addition there is a programmable element that can be utilized by the design tools necessary in achieving zero hold times.

Figure 2-16. MachXO PIO Block Diagram

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as Banks. The sysIO buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, TTL, BLVDS, LVDS and LVPECL.

In the MachXO devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are powered using V_{CCIO} . In addition to the bank V_{CCIO} supplies, the MachXO devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that powers up a variety of internal circuits including all the differential and referenced input buffers

MachXO devices contain two types of sysIO buffer pairs.

1. Top and Bottom sysIO Buffer Pairs

The sysIO buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (for ratioed or absolute operation). The I/O pairs of the top and bottom on the MachXO1200 and MachXO2280 devices also support differential input buffers and PCI clamps.

The two pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential input buffer and the comp (complementary) pad is associated with the negative side of the differential input buffer.

2. Left and Right sysIO Buffer Pairs

The sysIO buffer pairs in the left and right banks of the device consist of two single-ended output drivers and two sets of single-ended input buffers (supporting ratioed and absolute operation). The MachXO1200 and MachXO2280 devices also have a differential driver per output pair. The referenced input buffer can also be configured as a differential input on the MachXO1200 and MachXO2280 devices only. In these banks the two

pads in the pair are described as "true" and "comp", where the true pad is associated with the positive side of the differential I/O, and the comp (complementary) pad is associated with the negative side of the differential I/O.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} and V_{CCAUX} have reached satisfactory levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user's responsibility to ensure that all other V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. For more information on controlling the output logic state with valid input logic levels during power-up in MachXO devices, see details of additional technical documentation at the end of this data sheet.

The V_{CC} and V_{CCAUX} supply the power to the FPGA core fabric, whereas the V_{CCIO} supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended that the I/O buffers be powered up prior to the FPGA core fabric. Therefore, it is recommended that V_{CCIO} supplies be powered up before or together with the V_{CC} and V_{CCAUX} supplies

Supported Standards

The MachXO sysIO buffer supports both single-ended and differential standards. Single-ended standards can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2, 1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable options for drive strength, bus maintenance (weak pull-up, weak pull-down, bus-keeper latch or none) and open drain. BLVDS and LVPECL output emulation is supported on all devices. The MachXO1200 and MachXO2280 support on-chip LVDS output buffers on approximately 50% of the I/Os on the left and right banks. Differential receivers for LVDS, BLVDS and LVPECL are supported on all banks of MachXO1200 and MachXO2280 devices. PCI support is provided in the top banks of the MachXO1200 and MachXO2280 devices. Table 2-8 summarizes the I/O characteristics of the devices in the MachXO family.

Tables 2-9 and 2-10 show the I/O standards (together with their supply and reference voltages) supported by the MachXO devices. For further information on utilizing the sysIO buffer to support a variety of standards please see the details of additional technical documentation at the end of this data sheet.

Table 2-8. I/O Support Device by Device

	MachXO256	MachXO640	MachXO1200	MachXO2280
Number of I/O Banks	2	4	8	8
Type of Input Buffers	Single-ended (all four sides)	Single-ended (all four sides)	Single-ended (all four sides)	Single-ended (all four sides)
			Differential Receivers (all four sides)	Differential Receivers (all four sides)
Types of Output Buffers	Single-ended buffers with complementary outputs (all four sides)	Single-ended buffers with complementary outputs (all four sides)	Single-ended buffers with complementary outputs (all four sides)	Single-ended buffers with complementary outputs (all four sides)
Types of Gatput Ballors			Differential buffers with true LVDS outputs (50% on left and right side)	Differential buffers with true LVDS outputs (50% on left and right side)
Differential Output Emulation Capability	All four sides	All four sides	All four sides	All four sides
PCI Support	No	No	Top side only	Top side only

Table 2-9. Supported Input Standards

	VCCIO (NOM)				
Input Standard	3.3V	2.5V	1.8V	1.5V	1.2V
Single Ended Interfaces	•				
LVTTL	V	√	√	√	V
LVTTL	√	√	√	√	V
LVCMOS33	√	√	√	√	√
LVCMOS33	V	√	√	√	√
LVCMOS25	√	√	√	√	V
LVCMOS25	√	√	√	√	√
LVCMOS18			√		
LVCMOS15				√	
LVCMOS12	√	√	√	√	√
PCI ¹	V				
Differential Interfaces	•				•
BLVDS ² , LVDS ² , LVPECL ² , RSDS ²	V				

^{1.} Top banks of MachXO1200 and MachXO2280 devices only.

Table 2-10. Supported Output Standards

Output Standard	Drive	V _{CCIO} (Nom.)				
Single-ended Interfaces						
LVTTL	4mA, 8mA, 12mA, 16mA	3.3				
LVCMOS33	4mA, 8mA, 12mA, 14mA	3.3				
LVCMOS25	4mA, 8mA, 12mA, 14mA	2.5				
LVCMOS18	4mA, 8mA, 12mA, 14mA	1.8				
LVCMOS15	4mA, 8mA	1.5				
LVCMOS12	2mA, 6mA	1.2				
LVCMOS33, Open Drain	4mA, 8mA, 12mA, 14mA	_				
LVCMOS25, Open Drain	4mA, 8mA, 12mA, 14mA	_				
LVCMOS18, Open Drain	4mA, 8mA, 12mA, 14mA	_				
LVCMOS15, Open Drain	4mA, 8mA	_				
LVCMOS12, Open Drain	2mA, 6mA	_				
PCI33 ³	N/A	3.3				
Differential Interfaces	Differential Interfaces					
LVDS ^{1, 2}	N/A	2.5				
BLVDS ²	N/A	2.5				
RSDS ² , LVPECL ²	N/A	3.3				

^{1.} MachXO1200 and MachXO2280 devices have dedicated LVDS buffers.

sysIO Buffer Banks

The number of banks vary between the devices of this family. Eight banks surround the two larger devices, the MachXO1200 and MachXO2280 (two banks per side). The MachXO640 has four banks (one bank per side). The smallest member of this family, the MachXO256, has only two banks. The bank arrangements are shown in Figures 2-17, 2-18, 2-19 and 2-20.

^{2.} MachXO1200 and MachXO2280 devices only.

^{2.} These interfaces can be emulated with external resistors in all devices.

^{3.} Top banks of MachXO1200 and MachXO2280 devices only.

Each sysIO buffer bank is capable of supporting multiple I/O standards. Each bank has its own I/O supply voltage (V_{CCIO}) which allows it to be completely independent from the other banks. Figure 2-17, Figure 2-18, Figure 2-19 and Figure 2-20 shows the sysIO banks and their associated supplies for all devices.

Figure 2-17. MachXO2280 Banks

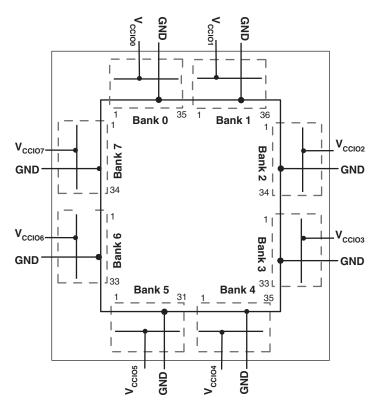


Figure 2-18. MachXO1200 Banks

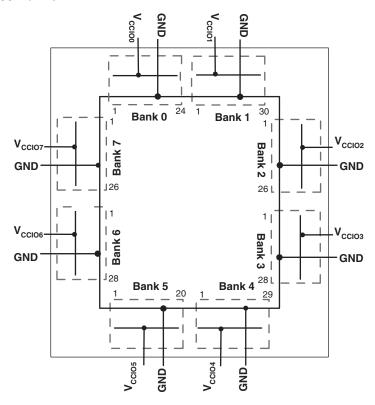


Figure 2-19. MachXO640 Banks

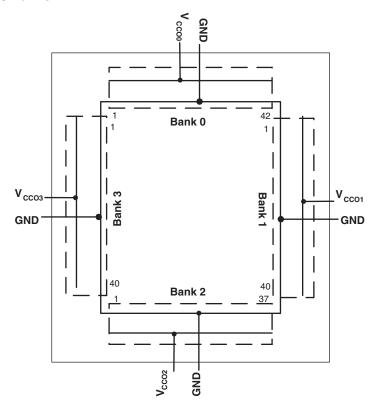
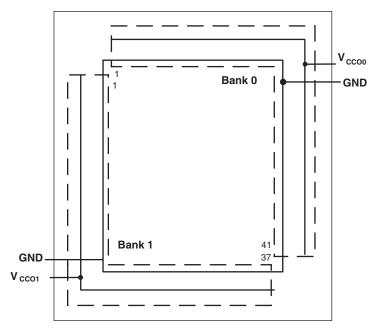



Figure 2-20. MachXO256 Banks

Hot Socketing

The MachXO devices have been carefully designed to ensure predictable behavior during power-up and power-down. Power supplies can be sequenced in any order. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits. This allows for easy integration with the rest of the system. These capabilities make the MachXO ideal for many multiple power supply and hot-swap applications.

Sleep Mode

The MachXO "C" devices ($V_{CC} = 1.8/2.5/3.3V$) have a sleep mode that allows standby current to be reduced by up to two orders of magnitude during periods of system inactivity. Entry and exit to Sleep mode is controlled by the SLEEPN pin.

During Sleep mode, the logic is non-operational, registers and EBR contents are not maintained and I/Os are tristated. Do not enter Sleep mode during device programming or configuration operation. In Sleep mode, power supplies are in their normal operating range, eliminating the need for external switching of power supplies. Table 2-11 compares the characteristics of Normal, Off and Sleep modes.

Table 2-11. Characteristics of Normal, Off and Sleep Modes

Characteristic	Normal	Off	Sleep
SLEEPN Pin	High	_	Low
Static Icc	Typical <10mA	0	Typical <100uA
I/O Leakage	<10µA	<1mA	<10µA
Power Supplies VCC/VCCIO/VCCAUX	Normal Range	0	Normal Range
Logic Operation	User Defined	Non Operational	Non operational
I/O Operation	User Defined	Tri-state	Tri-state
JTAG and Programming circuitry	Operational	Non-operational	Non-operational
EBR Contents and Registers	Maintained	Non-maintained	Non-maintained

SLEEPN Pin Characteristics

The SLEEPN pin behaves as an LVCMOS input with the voltage standard appropriate to the VCC supply for the device. This pin also has a weak pull-up along with a Schmidt trigger and glitch filter to prevent false triggering. Typically the device enters sleep mode several hundred ns after SLEEPN is held at a valid low and restarts normal operation as specified in the Sleep Mode Timing table. The AC and DC specifications portion of this data sheet show a detailed timing diagram.

Oscillator

Every MachXO device has an internal CMOS oscillator. The oscillator can be routed as an input clock to the clock tree. The oscillator frequency can be divided by internal logic. There is a dedicated programming bit to enable/disable the oscillator.

Configuration and Testing

The following section describes the configuration and testing features of the MachXO family of devices.

IEEE 1149.1-Compliant Boundary Scan Testability

All MachXO devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port shares its power supply with $V_{\rm CCIO}$ (MachXO256: $V_{\rm CCIO1}$; MachXO640: $V_{\rm CCIO2}$; MachXO1200 and MachXO2280: $V_{\rm CCIO5}$) and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.

For more details on boundary scan test, please see information regarding additional technical documentation at the end of this data sheet.

Device Configuration

All MachXO devices contain a test access port that can be used for device configuration and programming. The test access port (TAP) supports bit-wide configuration.

The non-volatile memory in the MachXO can be configured in two different modes:

- In IEEE 1532 mode via the IEEE 1149.1 port. In this mode, the device is off line and I/Os are connected by BSCAN registers.
- In background mode via the IEEE 1149.1 port. This allows the device to remain operational in user mode while reprogramming takes place.

The SRAM configuration memory can be configured in three different ways:

- At power-up via the on-chip non-volatile memory.
- After a refresh command is issued via the IEEE 1149.1 port.
- In IEEE 1532 mode via the IEEE 1149.1 port.

Figure 2-21 provides a pictorial representation of the different programming modes available in the MachXO devices. On power-up, the SRAM is ready to be configured with IEEE 1149.1 serial TAP port using IEEE 1532 protocols.

Leave Alone I/O

When using IEEE 1532 mode for non-volatile memory programming, SRAM configuration or issuing a refresh command, users may specify I/Os as high, low, tristated or held at current value. This provides excellent flexibility for implementing systems where reconfiguration or reprogramming occurs on-the-fly.

TransFR (<u>Trans</u>parent <u>Field Reconfiguration</u>)

TransFR (TFR) is a unique Lattice technology that allows users to update their logic in the field without interrupting system operation using a single ispVM command. See Lattice technical note #TN1087, *Minimizing System Interruption During Configuration Using TransFR Technology*, for details.

Security

The MachXO family of devices have Flash RAMs and configuration SRAMs. Both memories can be read back from the TAP port. The bit streams from SRAM cells and Flash cells can be protected from unauthorized read back. Both Flash RAM and SRAM in MachXO devices have multiple security fuses to prevent unauthorized read back. Once set, the only way to clear the security bits is to erase the memory space. The secured device will read out an all "0" pattern.

For more information on device configuration, please see details of additional technical documentation at the end of this data sheet.

Mode

Program in seconds

Non-volatile Memory Space

Download in microseconds

ISP 1149.1 TAP Port

BACKGND

1532

Configure in milliseconds

SRAM
Memory Space

Figure 2-21. MachXO Configuration and Programming

Density Shifting

The MachXO family has been designed to ensure that different density devices in the same package have the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.

MachXO Family Data Sheet DC and Switching Characteristics

July 2005 Advance Data Sheet

Absolute Maximum Ratings^{1, 2, 3, 4}

	LCMXO E (1.2V)	LCMXO C (1.8V/2.5V/3.3V)
Supply Voltage V _{CC}	0.5 to 1.32V	0.5 to 3.75V
Supply Voltage V _{CCAUX}	0.5 to 3.75V	0.5 to 3.75V
Output Supply Voltage V _{CCIO}	0.5 to 3.75V	0.5 to 3.75V
I/O Tristate Voltage Applied ⁵	0.5 to 3.75V	0.5 to 3.75V
Input Voltage Applied 5	0.5 to 3.75V	0.5 to 4.25V
Storage Temperature (ambient)	65 to 150°C	65 to 150°C
Junction Temp. (Tj)	+125°C	+125°C

^{1.} Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

- 2. Compliance with the Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.
- 4. For BGA style packages, all chip grounds are connected together to a common package GND plane.
- 5. Overshoot and undershoot of -2V to (V_{IHMAX} + 2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V	Core Supply Voltage for 1.2V Devices	1.14	1.26	V
V _{CC}	Core Supply Voltage for 1.8V/2.5V/3.3V Devices	1.71	3.465	V
V _{CCAUX}	Auxiliary Supply Voltage	3.135	3.465	V
V _{CCIO} ^{1, 2}	I/O Driver Supply Voltage	1.14	3.465	V
t _{JCOM}	Junction Temperature Commercial Operation	0	+85	С
t _{JIND}	Junction Temperature Industrial Operation	-40	100	С

If V_{CCIO} is set to 3.3V, it must be connected to the same power supply as V_{CCAUX}. For the LCMXO_E devices (1.2V V_{CC}), if V_{CCIO} is set to 1.2V, it must be connected to the same power supply as V_{CC}.

Hot Socketing Specifications^{1, 2, 3, 4}

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
I _{DK}	Input or I/O leakage Current	$0 \le V_{IN} \le V_{IH} (MAX)$	_	_	+/-1000	μΑ

^{1.} Insensitive to sequence of $V_{CC,}V_{CCAUX}$ and V_{CCIO} . However, assumes monotonic rise/fall rates for $V_{CC,}V_{CCAUX}$ and V_{CCIO} .

^{2.} See recommended voltages by I/O standard in subsequent table.

^{2.} $0 \le V_{CC} \le V_{CC}$ (MAX), $0 \le V_{CCIO} \le V_{CCIO}$ (MAX) or $0 \le V_{CCAUX} \le V_{CCAUX}$ (MAX).

^{3.} I_{DK} is additive to I_{PU}, I_{PD} or I_{BH}.

^{4.} LVCMOS and LVTTL only.

DC Electrical Characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IL,} I _{IH} ¹	Input or I/O Low leakage	$0 \le V_{IN} \le (V_{CCIO} - 0.2V)$	_	_	10	μΑ
'IL, 'IH 	Imput of I/O Low leakage	$(V_{CCIO} - 0.2V) \le V_{IN} \le 3.6V$	_	_	40	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	_	-150	μΑ
I _{PD}	I/O Active Pull-down Current	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30	_	150	μΑ
I _{BHLS}	Bus Hold Low sustaining current	$V_{IN} = V_{IL} (MAX)$	30	_	_	μΑ
I _{BHHS}	Bus Hold High sustaining current	$V_{IN} = 0.7V_{CCIO}$	-30	_	_	μΑ
I _{BHLO}	Bus Hold Low Overdrive current	$0 \le V_{IN} \le V_{IH} (MAX)$	_	_	150	μΑ
Івнно	Bus Hold High Overdrive current	$0 \le V_{IN} \le V_{IH} (MAX)$	_	_	-150	μΑ
V _{BHT} ³	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH} (MAX)$	V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²	$V_{CCIO} = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V, V_{CC} = 1.2V, V_{IO} = 0 \text{ to } V_{IH} \text{ (MAX)}$	_	8	_	pf
C2	Dedicated Input Capacitance ²	$V_{CCIO} = 3.3V$, 2.5V, 1.8V, 1.5V, 1.2V, $V_{CC} = 1.2V$, $V_{IO} = 0$ to V_{IH} (MAX)	_	8	_	pf

^{1.} Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

^{2.} $T_A 25^{\circ}C$, f = 1.0MHz

^{3.} Please refer to V_{IL} and V_{IH} in the sysIO Single-Ended DC Electrical Characteristics table of this document.

Supply Current (Standby)^{1, 2, 3, 4}

Symbol	Parameter	Device	Typ.⁵	Units
		LCMXO256C		mA
		LCMXO640C		mA
		LCMXO1200C		mA
	Core Power Supply	LCMXO2280C		mA
lcc	Core Fower Supply	LCMXO256E		mA
		LCMXO640E		mA
		LCMXO1200E		mA
		LCMXO2280E		mA
		LCMXO256E/C		mA
I _{CCAUX}	Auxiliary Power Supply	LCMXO640E/C		mA
	$V_{CCAUX} = 3.3V$	LCMXO1200E/C		mA
		LCMXO2280E/C		mA
CCIO	Bank Power Supply ⁶			mA

- 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
- 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.
- 3. Frequency = 0MHz.
- 4. User pattern: blank.
- 5. T_J=25°C, power supplies at nominal voltage.
- 6. Per bank.

Initialization Supply Current^{1, 2, 3}

Symbol	Parameter	Device	Typ.⁴	Units
		LCMXO256C		mA
		LCMXO640C		mA
		LCMXO1200C		mA
1	Core Power Supply	LCMXO2280C		mA
Icc	Core Power Suppry	LCMXO256E		mA
		LCMXO640E		mA
		LCMXO1200E		mA
		LCMXO2280E		mA
		LCMXO256E/C		mA
I _{CCAUX}	Auxiliary Power Supply	LCMXO640E/C		mA
	$V_{CCAUX} = 3.3V$	LCMXO1200E/C		mA
		LCMXO2280E/C		mA
I _{CCIO}	Bank Power Supply ⁵			mA

- 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
- 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.
- 3. Frequency = 0MHz.
- 4. $T_J=25$ °C, power supplies at nominal voltage.
- 5. Per bank.

Programming and Erase Flash Supply Current^{1, 2, 3, 4, 5}

Symbol	Parameter	Device	Typ. ⁶	Units
		LCMXO256C		mA
		LCMXO640C		mA
		LCMXO1200C		mA
1	Core Power Supply	LCMXO2280C		mA
l _{CC}	Core Fower Supply	LCMXO256E		mA
		LCMXO640E		mA
		LCMXO1200E		mA
		LCMXO2280E		mA
		LCMXO256C /E		mA
1	Auxiliary Power Supply	LCMXO640C /E		mA
ICCAUX V	$V_{CCAUX} = 3.3V$	LCMXO1200 /E		mA
		LCMXO2280C /E		mA
I _{CCIO}	Bank Power Supply ⁷			

- 1. For further information on supply current, please see details of additional technical documentation at the end of this data sheet.
- 2. Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the V_{CCIO} or GND.
- 3. Typical user pattern.
- 4. Measured with 11µF bypass capacitor across the supply.
- 5. JTAG programming is at 25MHz; sysCONFIG programming is at 66MHz.
- 6. T_J=25°C, power supplies at nominal voltage.
- 7. Per bank.

	V _{CCIO}				
Standard	Min.	Тур.	Max.		
LVCMOS 3.3	3.135	3.3	3.465		
LVCMOS 2.5	2.375	2.5	2.625		
LVCMOS 1.8	1.71	1.8	1.89		
LVCMOS 1.5	1.425	1.5	1.575		
LVCMOS 1.2	1.14	1.2	1.26		
LVTTL	3.135	3.3	3.465		
PCI33	3.135	3.3	3.465		
LVDS	2.375	2.5	2.625		
LVPECL1	3.135	3.3	3.465		
RSDS, BLVDS ¹	2.375	2.5	2.625		

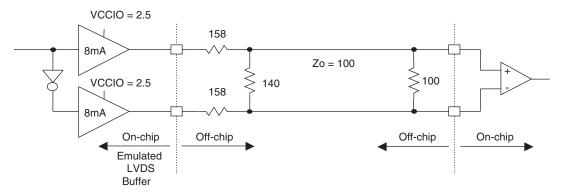
^{1.} Inputs on chip. Outputs are implemented with the addition of external resistors.

sysIO Single-Ended DC Electrical Characteristics

Input/Output	V _{IL}		V _{IH}		V _{OL} Max.	V _{OH} Min.	l _{OL} 1	l _{OH} ¹
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	(V)	(V)	(mA)	(mA)
LVCMOS 3.3	-0.3	0.8	2.0	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
LVCIVIOS 3.3	-0.5	0.0	2.0	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
					0.4	2.4	16	-16
LVTTL	-0.3	8.0	2.0	3.6	0.4	V _{CCIO} - 0.4	12, 8, 4	-12, -8, -4
					0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 2.5	-0.3	0.7	1.7	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
EVOIVIOU 2.5	-0.5	0.7	1.7	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.8	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	16, 12, 8, 4	-14, -12, -8, -4
LVCIVIOS 1.0	-0.5	0.33 A CCIO	0.03 A CCIO	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.5	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	8, 4	-8, -4
LVCIVIOS 1.5	-0.5	0.33 A CCIO	0.03 v CCIO	3.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
LVCMOS 1.2	-0.3	0.35V _{CCIO}	0.65V _{CCIO}	3.6	0.4	V _{CCIO} - 0.4	6, 2	-6, -2
LV OIVIOS 1.2	-0.5	0.00 A CCIO	o.oo v CCIO	0.0	0.2	V _{CCIO} - 0.2	0.1	-0.1
PCI	-0.3	0.3V _{CCIO}	0.5V _{CCIO}	3.6	0.1V _{CCIO}	0.9V _{CCIO}	1.5	-0.5

^{1.} The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or between the last GND in a bank and the end of a bank.

sysIO Differential Electrical Characteristics LVDS


Over Recommended Operating Conditions

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Units
V _{INP,} V _{INM}	Input Voltage		0	_	2.4	V
V_{THD}	Differential Input Threshold		+/-100	_	_	mV
		100mV ≤ V _{THD}	V _{THD} /2	1.2	1.8	V
V_{CM}	Input Common Mode Voltage	200mV ≤ V _{THD}	V _{THD} /2	1.2	1.9	V
		350mV ≤ V _{THD}	V _{THD} /2	1.2	2.0	V
I _{IN}	Input current	Power on or power off	_	_	+/-10	μΑ
V _{OH}	Output high voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	_	1.38	1.60	V
V _{OL}	Output low voltage for V _{OP} or V _{OM}	R _T = 100 Ohm	0.9V	1.03	_	V
V _{OD}	Output voltage differential	$(V_{OP} - V_{OM}), R_T = 100 Ohm$	250	350	450	mV
ΔV_{OD}	Change in V _{OD} between high and low		_	_	50	mV
V _{OS}	Output voltage offset	$(V_{OP} - V_{OM})/2$, $R_T = 100 \text{ Ohm}$	1.125	1.25	1.375	V
ΔV_{OS}	Change in V _{OS} between H and L		_	_	50	mV
I _{OSD}	Output short circuit current	V _{OD} = 0V Driver outputs shorted	_	_	6	mA

LVDS Emulation

MachXO can support LVDS outputs via emulation labeled LVDS25E, in addition to the LVDS support that is available on-chip on certain devices. The output is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all devices. The scheme shown in Figure 3-1 is one possible solution for LVDS standard implementation. Resistor values in Figure 3-1 are industry standard values for 1% resistors.

Figure 3-1. LVDS Using External Resistors (LVDS25E)

Note: All resistors are ±1%.

The LVDS differential input buffers are available on certain devices in the MachXO family.

Table 3-1. LVDS DC Conditions

Over Recommended Operating Conditions

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	Ω
R _S	Driver series resistor	294	Ω
R _P	Driver parallel resistor	121	Ω
R _T	Receiver termination	100	Ω
V _{OH}	Output high voltage	1.43	V
V _{OL}	Output low voltage	1.07	V
V _{OD}	Output differential voltage	0.35	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	100	Ω
I _{DC}	DC output current	3.66	mA

BLVDS

The MachXO family supports the BLVDS standard. The output is emulated using complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. The input standard is supported by the LVDS differential input buffer on certain devices. BLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS Multi-point Output Example

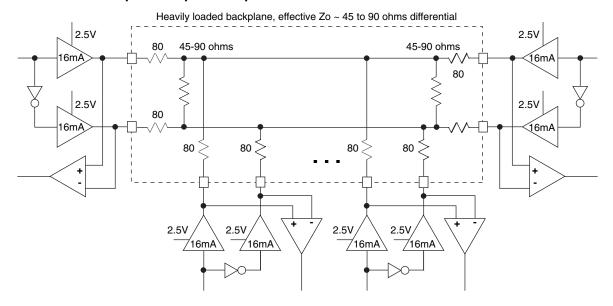


Table 3-2. BLVDS DC Conditions1

		Nominal		
Symbol	Description	Zo = 45	Zo = 90	Units
Z _{OUT}	Output impedance	100	100	ohm
R _{TLEFT}	Left end termination	45	90	ohm
R _{TRIGHT}	Right end termination	45	90	ohm
V _{OH}	Output high voltage	1.375	1.48	V
V _{OL}	Output low voltage	1.125	1.02	V
V _{OD}	Output differential voltage	0.25	0.46	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	11.2	10.2	mA

^{1.} For input buffer, see LVDS table.

LVPECL

The MachXO family supports the differential LVPECL standard. This output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The LVPECL input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-3 is one possible solution for point-to-point signals.

Figure 3-3. Differential LVPECL

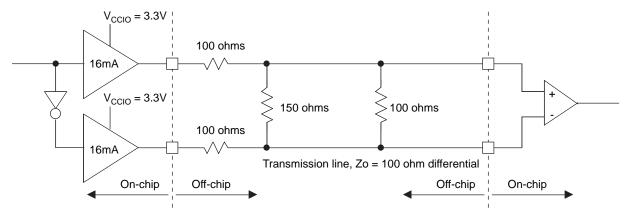


Table 3-3. LVPECL DC Conditions1

Symbol	Description	Nominal	Units
Z _{OUT}	Output impedance	100	ohm
R _P	Driver parallel resistor	150	ohm
R _T	Receiver termination	100	ohm
V _{OH}	Output high voltage	2.03	V
V _{OL}	Output low voltage	1.27	V
V _{OD}	Output differential voltage	0.76	V
V _{CM}	Output common mode voltage	1.65	V
Z _{BACK}	Back impedance	85.7	ohm
I _{DC}	DC output current	12.7	mA

^{1.} For input buffer, see LVDS table.

For further information on LVPECL, BLVDS and other differential interfaces please see details of additional technical documentation at the end of the data sheet.

RSDS

The MachXO family supports the differential RSDS standard. The output standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs on all the devices. The RSDS input standard is supported by the LVDS differential input buffer on certain devices. The scheme shown in Figure 3-4 is one possible solution for RSDS standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in Figure 3-4 are industry standard values for 1% resistors.

Figure 3-4. RSDS (Reduced Swing Differential Standard)

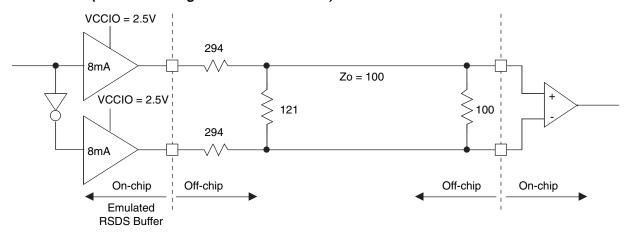


Table 3-4. RSDS DC ConditionsTypical Building Block Function Performance¹

Parameter	Description	Typical	Units
Z _{OUT}	Output impedance	20	ohm
R _S	Driver series resistor	294	ohm
R _P	Driver parallel resistor	121	ohm
R _T	Receiver termination	100	ohm
V _{OH}	Output high voltage	1.35	V
V _{OL}	Output low voltage	1.15	V
V _{OD}	Output differential voltage	0.20	V
V _{CM}	Output common mode voltage	1.25	V
Z _{BACK}	Back impedance	101.5	ohm
I _{DC}	DC output current	3.66	mA

Pin-to-Pin Performance (LVCMOS25 12mA Drive)

Function	-5 Timing	Units		
Basic Functions				
16-bit decoder	6.9	ns		
4:1 MUX	4.6	ns		
16:1 MUX	5.7	ns		

Register-to-Register Performance

Function	-5 Timing	Units
Basic Functions		
16:1 MUX	449	MHz
16-bit adder	294	MHz
16-bit counter	345	MHz
64-bit counter	175	MHz
Embedded Memory Functions (12	00 and 2280 Devices Only)	
256x36 Single Port RAM		MHz
512x18 True-Dual Port RAM		MHz
Distributed Memory Functions		
16x2 Single Port RAM	496	MHz
64x2 Single Port RAM	339	MHz
128x4 Single Port RAM	275	MHz
32x2 Pseudo-Dual Port RAM	313	MHz
64x4 Pseudo-Dual Port RAM	244	MHz

The above timing numbers are generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool uses internal parameters that have been characterized but are not tested on every device.
 Rev 0.10

Derating Logic Timing

Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst case numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process, can be much better than the values given in the tables. The ispLEVER design tool from Lattice can provide logic timing numbers at a particular temperature and voltage.

MachXO External Switching Characteristics¹

Over Recommended Operating Conditions

			-5		-	4	-3		
Parameter	Description	Device	Min.	Max.	Min.	Max.	Min.	Max.	Units
General I/C	Pin Parameters (Using Global Clock w	rithout PLL)1	1						
	Post Coost through 1 LLT	LCMXO256	_	3.5		4.4	_	5.1	ns
t _{PD2}	Best Case t _{PD} through 1 LUT	LCMXO640	_	3.5	_	4.4	_	5.1	ns
+	Best Case Clock to Output - from PFU	LCMXO256	_	3.9	_	4.7	_	5.5	ns
t _{CO2}	Best Case Clock to Output - Horri FFO	LCMXO640	_	4.0	_	4.8	_	5.6	ns
+	Root Casa Clock to Data Satura to BELL	LCMXO256	0.1		0.1	_	0.1	_	ns
t _{SU}	Best Case Clock to Data Setup - to PFU	LCMXO640	0.0	_	0.0	_	0.0	_	ns
	Clock to Data Hold - to PFU, for Best	LCMXO256		_		_		_	ns
t _H	Case t _{SU}	LCMXO640		_		_		_	ns
	Best Case Clock to Data Setup - to PFU	LCMXO256		_		_		_	ns
t _{SU_DEL}	with Data Input Delay	LCMXO640		_		_		_	ns
+	Best Case Clock to Data Hold - to PFU	LCMXO256	-1.2		-1.5	_	-1.7	_	ns
with Data Input Delay for Best Case to		LCMXO640	-1.2	_	-1.4	_	-1.6	_	ns
f _{MAX_IO}	Clock Frequency of I/O and PFU Register		_		_		_		MHz
t _{SKEW_PRI}	Global Clock Skew Across Device		_		_		_		ps

^{1.} General timing numbers based on LVCMOS2.5V, 12mA. Rev 0.10

MachXO Internal Timing Parameters¹

Over Recommended Operating Conditions

		-	5	_	4	_	3	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
PFU/PFF Logic	: Mode Timing	I.	l .	1		1	1	
t _{LUT4_PFU}	LUT4 Delay (A to D Inputs to F Output)	_	0.30	_	0.36	_	0.42	ns
t _{LUT6_PFU}	LUT6 Delay (A to D Inputs to OFX Output)	_	0.38	—	0.46	—	0.53	ns
t _{LSR_PFU}	Set/Reset to Output of PFU		0.74	_	0.88	 	1.03	ns
t _{SUM_PFU}	Clock to Mux (M0,M1) Input Setup Time	0.18	_	0.22	_	0.25	_	ns
t _{HM PFU}	Clock to Mux (M0,M1) Input Hold Time	-0.12	_	-0.14	_	-0.16	_	ns
t _{SUD PFU}	Clock to D Input Setup Time	0.15	_	0.18	_	0.21	_	ns
t _{HD_PFU}	Clock to D Input Hold Time	-0.12	_	-0.14	_	-0.16	_	ns
t _{CK2Q_PFU}	Clock to Q Delay, D-type Register Configuration	_	0.36	_	0.43	_	0.50	ns
t _{LE2Q_PFU}	Clock to Q Delay Latch Configuration	_	0.48	_	0.58	_	0.68	ns
t _{LD2Q_PFU}	D to Q Throughput Delay when Latch is Enabled	_	0.54	_	0.64	_	0.75	ns
PFU Memory M	Node Timing						I.	·
t _{CORAM_PFU}	Clock to Output	_	0.36	-	0.43	_	0.50	ns
t _{SUDATA_PFU}	Data Setup Time	-0.21	_	-0.26	_	-0.30	_	ns
t _{HDATA_PFU}	Data Hold Time	0.22	_	0.26	_	0.31	_	ns
t _{SUADDR_PFU}	Address Setup Time	-0.30	_	-0.35	_	-0.41	_	ns
t _{HADDR_PFU}	Address Hold Time	0.30	_	0.37	_	0.43	_	ns
t _{SUWREN_PFU}	Write/Read Enable Setup Time	-0.04	_	-0.04	_	-0.05	_	ns
t _{HWREN_PFU}	Write/Read Enable Hold Time	0.04	_	0.05	_	0.06	_	ns
PIO Input/Outp	out Buffer Timing				•	•		
t _{IN_PIO}	Input Buffer Delay	_	0.75	-	0.90	_	1.06	ns
t _{OUT_PIO}	Output Buffer Delay	_	1.29	_	1.54	_	1.80	ns
EBR Timing (12	200 and 2280 Devices Only)	•	•		•	•		•
t _{CO_EBR}	Clock to Output from Address or Data with No Output Register	_		_		_		ns
t _{COO_EBR}	Clock to Output from EBR Output Register	_		-		_		ns
t _{SUDATA_EBR}	Setup Data to EBR Memory		_		_		_	ns
t _{HDATA_EBR}	Hold Data to EBR Memory		_		_		_	ns
t _{SUADDR_EBR}	Setup Address to EBR Memory				_		_	ns
t _{HADDR_EBR}	Hold Address to EBR Memory		_		_		_	ns
t _{SUWREN_EBR}	Setup Write/Read Enable to EBR Memory		_		_		_	ns
t _{HWREN_EBR}	Hold Write/Read Enable to EBR Memory		_		_		_	ns
t _{SUCE_EBR}	Clock Enable Setup Time to EBR Output Register		_		_		_	ns
t _{HCE_EBR}	Clock Enable Hold Time to EBR Output Register		_		_		_	ns
t _{RSTO_EBR}	Reset To Output Delay Time from EBR Output Register	_		_		_		ns
PLL Parameter	s (1200 and 2280 Devices Only)	•	•	•		•	•	•
t _{RSTREC}	Reset Recovery to Rising Clock	_		_		_		ns
t _{RSTSU}	Reset Signal Setup Time		_		_		_	ns
t _{RSTW}	Reset Signal Pulse Width		_		_		_	ns
	·							

^{1.} Internal parameters are characterized but not tested on every device.

Rev 0.10

Timing Diagrams

PFU Timing Diagrams

Figure 3-5. Slice Single/Dual Port Write Cycle Timing

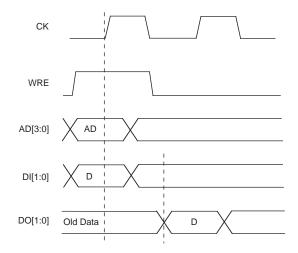
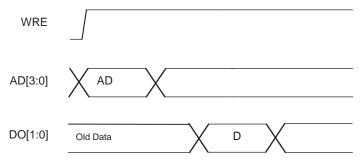
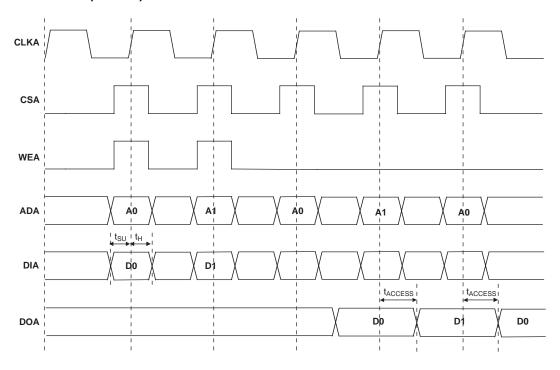




Figure 3-6. Slice Single/Dual Port Read Cycle Timing

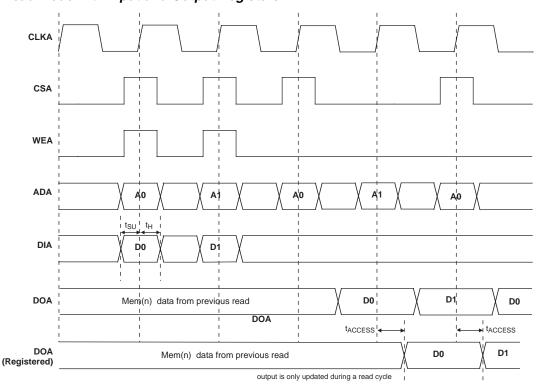

EBR Memory Timing Diagrams

Figure 3-7. Read Mode (Normal)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-8. Read Mode with Input and Output Registers

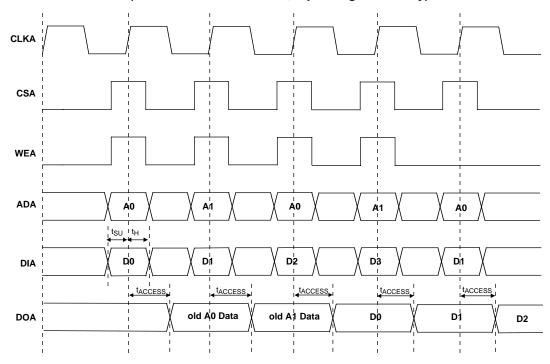


Figure 3-9. Read Before Write (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

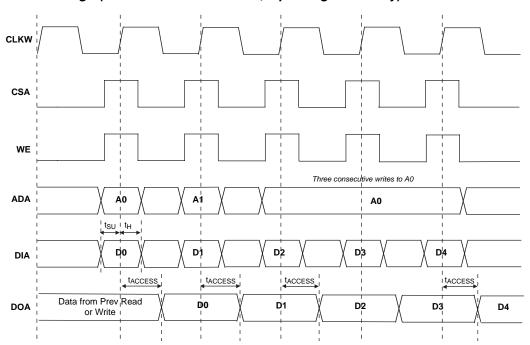
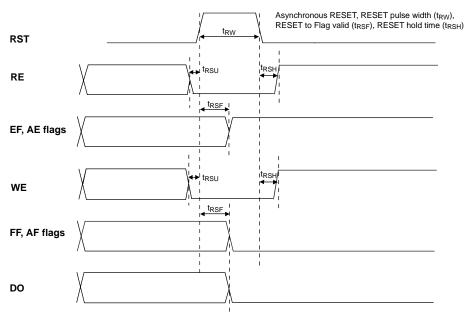



Figure 3-10. Write Through (SP Read/Write On Port A, Input Registers Only)

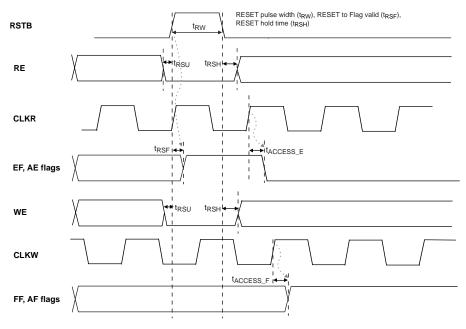

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

Figure 3-11. FIFO Reset Waveform

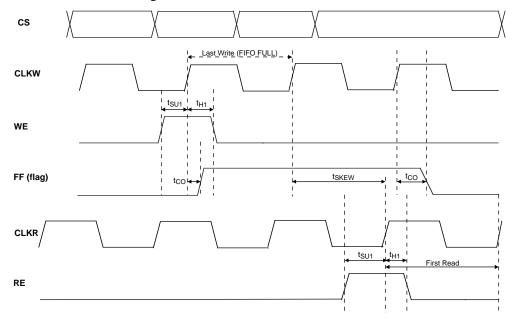

Note: RE and WE must be deactivated $t_{\mbox{\scriptsize RSU}}$ before the Positive FIFO reset edge and enabled $t_{\mbox{\scriptsize RSH}}$ after the FIFO reset negative edge.

Figure 3-12. Read Pointer Reset Waveform

Note: RE and WE must be deactivated t_{RSU} before the Positive FIFO reset edge and enabled t_{RSH} after the FIFO reset negative edge.

Figure 3-13. First Read after Full Flag Waveform

MachXO Family Timing Adders

Over Recommended Operating Conditions

Buffer	Description	-5	-5	-3	Units				
Input Adjusters									
LVTTL33	LVTTL	0.01	0.01	0.01	ns				
LVCMOS33	LVCMOS 3.3	0.01	0.01	0.01	ns				
LVCMOS25	LVCMOS 2.5	0.00	0.00	0.00	ns				
LVCMOS18	LVCMOS 1.8	0.07	0.08	0.10	ns				
LVCMOS15	LVCMOS 1.5	0.14	0.17	0.19	ns				
LVCMOS12	LVCMOS 1.2	0.40	0.48	0.56	ns				
PCI33	PCI				ns				
LVDS									
Output Adjusters		'							
LVDS25E	LVDS 2.5 E	-0.13	-0.15	-0.18	ns				
LVDS25	LVDS 2.5				ns				
BLVDS25	BLVDS 2.5	-0.03	-0.03	-0.04	ns				
LVPECL33	LVPECL 3.3	0.04	0.04	0.05	ns				
LVTTL33_4mA	LVTTL 4mA drive	0.04	0.04	0.05	ns				
LVTTL33_8mA	LVTTL 8mA drive	0.06	0.07	0.08	ns				
LVTTL33_12mA	LVTTL 12mA drive	-0.01	-0.01	-0.01	ns				
LVTTL33_16mA	LVTTL 16mA drive	0.50	0.60	0.70	ns				
LVTTL33_20mA	LVTTL 20mA drive				ns				
LVCMOS33_4mA	LVCMOS 3.3 4mA drive	0.04	0.04	0.05	ns				
LVCMOS33_8mA	LVCMOS 3.3 8mA drive	0.06	0.07	0.08	ns				
LVCMOS33_12mA	LVCMOS 3.3 12mA drive	-0.01	-0.01	-0.01	ns				
LVCMOS33_16mA	LVCMOS 3.3 16mA drive	0.50	0.60	0.70	ns				
LVCMOS33_20mA	LVCMOS 3.3 20mA drive				ns				
LVCMOS25_4mA	LVCMOS 2.5 4mA drive	0.05	0.06	0.07	ns				
LVCMOS25_8mA	LVCMOS 2.5 8mA drive	0.10	0.12	0.13	ns				
LVCMOS25_12mA	LVCMOS 2.5 12mA drive	0.00	0.00	0.00	ns				
LVCMOS25_16mA	LVCMOS 2.5 16mA drive	0.34	0.40	0.47	ns				
LVCMOS25_20mA	LVCMOS 2.5 20mA drive				ns				
LVCMOS18_4mA	LVCMOS 1.8 4mA drive	0.11	0.13	0.15	ns				
LVCMOS18_8mA	LVCMOS 1.8 8mA drive	0.05	0.06	0.06	ns				
LVCMOS18_12mA	LVCMOS 1.8 12mA drive	-0.06	-0.07	-0.08	ns				
LVCMOS18_16mA	LVCMOS 1.8 16mA drive	0.06	0.07	0.09	ns				
LVCMOS15_4mA	LVCMOS 1.5 4mA drive	0.15	0.19	0.22	ns				
LVCMOS15_8mA	LVCMOS 1.5 8mA drive	0.05	0.06	0.07	ns				
LVCMOS12_2mA	LVCMOS 1.2 2mA drive	0.26	0.31	0.36	ns				
LVCMOS12_6mA	LVCMOS 1.2 6mA drive	0.05	0.06	0.07	ns				

^{1.} Timing adders are characterized but not tested on every device.

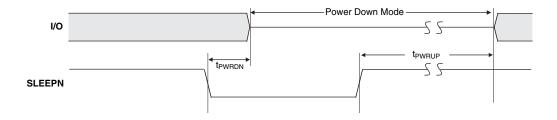
Rev 0.10

^{2.} LVCMOS timing measured with the load specified in the Switching Test Conditions table.

^{3.} All other standards tested according to the appropriate specifications.

sysCLOCK PLL Timing

Over Recommended Operating Conditions


Parameter	Descriptions	Conditions	Min.	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		25	420	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		25	420	MHz
f _{OUT2}	K-Divider Output Frequency (CLKOK)		0.195	210	MHz
f _{VCO}	PLL VCO Frequency		420	840	MHz
f _{PFD}	Phase Detector Input Frequency		25	_	MHz
AC Characte	eristics		•		
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected ³	45	55	%
t _{PH} ⁴	Output Phase Accuracy		_		UI
. 1	Output Clock Period Jitter	Fout ≥ 100MHz	_	+/-120	ps
t _{OPJIT} 1		Fout < 100MHz	_	0.02	UIPP
t _{SK}	Input Clock to Output Clock Skew	Divider ratio = integer	_	+/-200	ps
t _W	Output Clock Pulse Width	At 90% or 10% ³	1	_	ns
t _{LOCK} ²	PLL Lock-in Time		_	150	μs
t _{PA}	Programmable Delay Unit		100	400	ps
t _{IPJIT}	Input Clock Period Jitter		_	+/-200	ps
t _{FBKDLY}	External Feedback Delay		_	10	ns
t _{HI}	Input Clock High Time	90% to 90%	0.5	_	ns
t _{LO}	Input Clock Low Time	10% to 10%	0.5	_	ns
t _{RST}	RST Pulse Width		10	_	ns
	RST Pulse Width		10	_	ns

- 1. Jitter sample is taken over 10,000 samples of the primary PLL output with a clean reference clock.
- 2. Output clock is valid after t_{LOCK} for PLL reset and dynamic delay adjustment.
- 3. Using LVDS output buffers.
- 4. CLKOS as compared to CLKOP output.

Rev 0.10

MachXO "C" Sleep Mode Timing

Parameter	Descriptions	Min.	Тур.	Max.	Units	
t _{PWRDN}	SLEEPN Low to Power Down		_	100		ns
		LCMXO256	_	400		μs
	SLEEPN High to Power Up	LCMXO640	_	600		μs
^T PWRUP		LCMXO1200	_	800		μs
		LCMXO2280	_	1		ms
t _{WSLEEPN}	SLEEPN Pulse Width			500	_	ns
t _{WAWAKE}	SLEEPN Pulse Rejection		_	5		ns

JTAG Port Timing Specifications

Symbol	Parameter	Min.	Max.	Units
f _{MAX}	TCK Clock Frequency	_	20	MHz
t _{BTCP}	TCK [BSCAN] clock pulse width	50	_	ns
t _{BTCPH}	TCK [BSCAN] clock pulse width high	25	_	ns
t _{BTCPL}	TCK [BSCAN] clock pulse width low	25	_	ns
t _{BTS}	TCK [BSCAN] setup time	8	_	ns
t _{BTH}	TCK [BSCAN] hold time	10	_	ns
t _{BTRF}	TCK [BSCAN] rise/fall time	50	_	mV/ns
t _{BTCO}	TAP controller falling edge of clock to valid output	_	10	ns
t _{BTCODIS}	TAP controller falling edge of clock to valid disable	_	10	ns
t _{BTCOEN}	TAP controller falling edge of clock to valid enable	_	10	ns
t _{BTCRS}	BSCAN test capture register setup time	8	_	ns
t _{BTCRH}	BSCAN test capture register hold time	25	_	ns
t _{BUTCO}	BSCAN test update register, falling edge of clock to valid output	_	25	ns
t _{BTUODIS}	BSCAN test update register, falling edge of clock to valid disable	_	25	ns
t _{BTUPOEN}	BSCAN test update register, falling edge of clock to valid enable	_	25	ns

Rev 0.10

Switching Test Conditions

Figure 3-14 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Figure 3-5.

Figure 3-14. Output Test Load, LVTTL and LVCMOS Standards

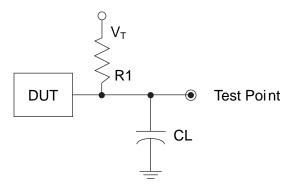


Table 3-5. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Ref.	V _T
			LVCMOS 3.3 = 1.5V	_
	∞		LVCMOS 2.5 = V _{CCIO} /2	_
LVTTL and other LVCMOS settings (L -> H, H -> L)		0pF	LVCMOS 1.8 = V _{CCIO} /2	_
			LVCMOS 1.5 = V _{CCIO} /2	_
			LVCMOS 1.2 = V _{CCIO} /2	_
LVCMOS 2.5 I/O (Z -> H)			V _{CCIO} /2	V _{OL}
LVCMOS 2.5 I/O (Z -> L)	188	0pF	V _{CCIO} /2	V _{OH}
LVCMOS 2.5 I/O (H -> Z)	100	υρι	V _{OH} - 0.15	V _{OL}
LVCMOS 2.5 I/O (L -> Z)			V _{OL} + 0.15	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

MachXO Family Data Sheet Pinout Information

July 2005 Advance Data Sheet

Signal Descriptions

Signal Name	I/O	Descriptions
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top). [Row/Column Number] indicates the PFU row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number]_[A/B/C/D/E/F]	I/O	[A/B/C/E/F] indicates the PIO within the group to which the pad is connected. Some of these user programmable pins are shared with special function pins. When not
		used as special purpose pins, these pins can be programmed as I/Os for user logic. During configuration of the user-programmable I/Os, the user has an option to tri-state the I/Os with an internal pull-up resistor. This option also applies to unused pins (or those not bonded to a package). The default during configuration is for user-programmable I/Os to be tri-stated with an internal pull-up resistor enabled.
GSRN	I	Global RESET signal (active low). Dedicated pad, when not in use it can be used as an I/O pin.
TSALL	I	TSALL is a dedicated pad for the global output enable signal. When TSALL is high all the outputs are tristated. It is a dual function pin. When not in use, it can be used as an I/O pin.
NC		No connect.
GND	_	GND - Ground. Dedicated Pins.
V _{CC}	_	VCC - The power supply pins for core logic. Dedicated Pins.
V _{CCAUX}	-	VCCAUX - the Auxiliary power supply pin. This pin powers up a variety of internal circuits including all the differential and referenced input buffers. Dedicated pins.
V _{CCIOx}		V _{CCIO} - The power supply pins for I/O bank x. Dedicated Pins.
SLEEPN ¹	I	Sleep Mode pin - Active low sleep pin. When this pin is held high, the device operates normally. When driven low, the device moves into Sleep mode after a specified time.
PLL and Clock Functions (Used a	as user programmable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN	_	Reference clock (PLL) input Pads: ULM, LLM, num = row from center, T = true and C = complement.
[LOC][num]_PLL[T, C]_OUT	_	Reference clock (PLL) output Pads: ULM, LLM, num = row from center, T = true and C = complement.
[LOC][num]_PLL[T, C]_FB	_	Optional feedback (PLL) input Pads: ULM, LLM, num = row from center, T = true and C = complement.
[LOC][num]_PLL_RST	_	PLL Reset (M register) input Pads: ULM, LLM, num = row from center.
PCLK[T, C] [n:0]_[3:0]	_	Primary Clock Pads, T = true and C = complement, n per side, indexed by bank and 0,1, 2, 3 within bank.
Test and Programming (De	dicate	d pins. Pull-up is enabled on input pins during configuration.)
TMS	I	Test Mode Select input, used to control the 1149.1 state machine.
TCK	I	Test Clock input pin, used to clock the 1149.1 state machine.
TDI	I	Test Data input pin, used to load data into the device using an 1149.1 state machine.
TDO	0	Output pin -Test Data out pin used to shift data out of the device using 1149.1.

^{1.} Applies to MachXO "C" devices only.

© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LCMX0640 Pin Information Summary

Pin Type	256 ftBGA	132 csBGA	100 csBGA	144 TQFP	100 TQFP	
Single Ended User I/O		159	101	74	113	74
Differential Pair User I/O		79	44	17	44	17
Muxed		6	6	6	6	6
TAP		4	4	4	4	4
Dedicated (Total Without Supplies)		5	5	5	5	5
VCC		4	4	2	4	2
VCCAUX		2	2	1	2	1
	Bank0	4	2	2	2	2
VCCIO	Bank1	4	2	2	2	2
VCCIO	Bank2	4	2	2	2	2
	Bank3	4	2	2	2	2
GND		4+18	4+8	2+8	4+8	2+8
NC		52	0	0	0	0
	Bank0	42/21	26/12	18/5	29/10	18/5
Single Ended/Differential I/O	Bank1	40/20	27/13	21/4	30/11	21/4
per Bank	Bank2	37/18	21/9	14/2	24/10	14/2
	Bank3	40/20	27/10	21/6	30/13	21/6

LCMXO256 Pin Information Summary

Pin Type	•	100 csBGA	100 TQFP
Single Ended User I/O		78	78
Differential Pair User I/O		38	38
Muxed		6	6
TAP		4	4
Dedicated (total without su	ıpplies)	5	5
V _{CC}		2	2
V _{CCAUX}		1	1
V	Bank0	3	3
V _{CCIO}	Bank1	3	3
GND		8	8
NC		0	0
Single Ended/Differential	Bank0	41/20	41/20
I/O per Bank	Bank1	37/18	37/18

LCMXO640 Power Supply and NC Connections

Signals	256 ftBGA	132 csBGA	100 csBGA	144 TQFP	100 TQFP
VCC	G7, G10, K7, K10	H3, P6, G12, C7	P7, B6	21, 52, 93, 129	35, 90
VCCIO0	F9, F10, F8, F7	B11, C5	B12, B5	117, 135	80, 92
VCCIO1	K11, J11, H11, G11	L12, E12	H14, A14	82, 98	60, 74
VCCIO2	L8, L7, L9, L10	N2, M10	P4, P10	38, 63	29, 41
VCCIO3	H6, G6, K6, J6	D2, K3	G1, P1	10, 26	10, 24
GND ¹	A1, A16, F11, G8, G9, H7, H8, H9, H10, J7, J8, J9, J10, K8, K9, L6, T1, T16	F1, P9, J14, C9, A10, B4, L13, D13, P2, N11, E1, L2	N9, B9, A10, A4, G14, B13, N3, N10, H1, N2	16, 59, 88, 123, 118, 136, 83, 99, 37, 64, 11, 27	40, 84, 81, 93, 62, 75, 30, 42, 12, 25
NC ²	R16, R15, P3, P2, P16, P15, N6, N5, N13, N12, N11, N10, M8, M7, M5, M4, M13, M12, M11, L11, K5, K4, H5, H4, G5, G4, F6, F5, F13, F12, E7, E6, E5, E4, E13, E12, E11, E10, D4, D3, D14, D13, C3, C2, C14, B3, B2, B15, B14, A15, J12, K12				

All grounds must be electrically connected at the board level.
 NC pins should not be connected to any active signals, V_{CC} or GND.

LCMXO256 Power Supply and NC Connections

Signals	100 csBGA	100 TQFP
VCC	P7, B6	35, 90
VCCIO0	H14, A14, B5	60, 74, 92
VCCIO1	G1, P1, P10	10, 24, 41
GND ¹	N9, B9, G14, B13, A4, H1, N2, N10	40, 84, 62, 75, 93, 12, 25, 42
NC ²		

^{1.} All grounds must be electrically connected at the board level.

^{2.} NC pins should not be connected to any active signals, $\rm V_{\rm CC}$ or GND.

Ball Function	Bank	Dual Function	LVDS	256fpBPA	144 TQFP	132 csBGA	100 csBGA	100 TQFP
	3							
GNDIO3	3			GND				
VCCIO3	3			VCCIO3				
PL2A	3		T	B1	1	B1	B1	1
PL2B	3		С	C1	3	C1	D2	3
PL2C	3		Т	E3	2	B2	C1	2
PL2D	3		С	E2	5	C2	D1	4
PL3A	3		T	F3	4	C3	C2	5
PL3B	3		С	F4	6	D1	E1	6
PL3C	3		Т	D2	7		E2	7
PL3D	3		С	D1	8	D3	F1	8
PL4A	3		Т	E1	9		F2	9
VCCIO3	3			VCCIO3	10	D2	G1	10
PL4B	3		С	F1				
PL4C	3		T	G3			G2	11
GNDIO3	3			GND	11	E1	H1	12
PL4D	3		С	Н3	12		H2	13
PL5A	3		T	F2	13	E2		
PL5B	3	GSRN	С	G2	14	E3	J1	14
PL5C	3		T	G1				
PL5D	3		С	H1	15	F2		
PL6A	3		Т	H2				
GND	3			GND	16	F1		
PL6B	3		С	J2		F3		
PL6C	3		Т	J1	17	G1		
PL6D	3		С	K1	18	G2		
	3							
PL7A	3		T	L1	19	G3		
PL7B	3		С	M1	20	H2	J2	15
PL7C	3		Т	J3		H1		
VCC	3			VCC	21	H3		
PL7D	3		С	K3				
PL8A	3		Т	J4	22	J1		
PL8B	3		С	J5	23			
PL8C	3	TSALL	Т	N1	24	J2	K1	16
PL8D	3		С	P1			K2	17
PL9A	3		Т	K2		J3	L1	18
PL9B	3		С	L2		K2		
PL9C	3		Т	M2	25	K1	L2	19
VCCIO3	3			VCCIO3	26	K3		
GNDIO3	3			GND	27	L2		
PL9D	3		С	N2	28			

TMS	T C T C T C C	L3 M3 L5 L4 R1 R2 N4 N3 VCCIO3 GND	29 30 31 33 32 35 34 36	L1 L3 M1 N1 M2 P1	M1 M2 N1 M3	20 21 22 23
TMS	T C C T	L5 L4 R1 R2 N4 N3 VCCIO3	31 33 32 35 34	M1 N1 M2	N1 M3	22
TMS	C T C T	L4 R1 R2 N4 N3 VCCIO3	33 32 35 34	N1 M2	N1 M3	22
TMS	T C T	R1 R2 N4 N3 VCCIO3	32 35 34	N1 M2	M3	23
TMS	C T	R2 N4 N3 VCCIO3	35 34	N1 M2	M3	23
TMS	Т	N4 N3 VCCIO3	34	M2		
TMS		N3 VCCIO3				
TMS	С	VCCIO3	36	P1	P1	
TMS					P1	
TMS		GND				24
TMS					N2	25
TMS						
TMS						
TMS	I	GND	37	P2		
TMS		VCCIO2	38	N2		
	Т	T2				
		P4	39	P3	P2	26
	С	Т3				
	Т	R4	40	M3	P3	27
	С	R5		N3		
TCK		R3	42	P4	N4	28
	Т	P5	41			
	С	P6	43	M4		
	Т	T5	44	N4		
		VCCIO2			P4	29
					N3	30
	С		45	P5		
				N5	P5	31
	С					
					N5	32
	С					
				M5	P6	33
	Т					34
	·	VCC	52	P6		35
	С			M6		
			53	P7		<u> </u>
	Т					
					N7	36
1			56	N8	P8	37
					N8	38
	TDO TDI PCLKT2_	C T T TDO C T T C C T C T C T T C C T C C T C C T C C C T C C C C C C T C	GND C T4 T R6 TDO M6 C T6 T T8 C T7 TDI N7 TDI N7 T R7 VCC C R8 T9 T N8 PCLKT2_1 C N9 T P7 C P8 T M10	GND C T4 45 T R6 46 TDO M6 47 C T6 48 T T8 49 C T7 50 TDI N7 51 T R7 VCC 52 C R8 T N8 54 PCLKT2_1 C N9 55 T P7 C P8 56 T M10 57	GND C T4 45 P5 T R6 46 TDO M6 47 N5 C T6 48 T T8 49 C T7 50 TDI N7 51 M5 T R7 N6 VCC 52 P6 C R8 M6 T N8 54 N7 PCLKT2_1 C N9 55 M7 T P7 C P8 56 N8 T M10 57 P8	GND N3 C T4 45 P5 T R6 46 46 TDO M6 47 N5 P5 C T6 48 49 N5 C T7 50 50 50 50 TDI N7 51 M5 P6 P6 P7 P6 P7 N6 N6 N6 N6 P7 P7 P8 P7 P7 P7 P7 P7 P7 P7 P8 P8

Ball Function	Bank	Dual Function	LVDS	256fpBPA	144 TQFP	132 csBGA	100 csBGA	100 TQFP
PB6C	2		Т	R9			P9	39
GND	2			GND	59	P9	N9	40
PB6D	2		С	R10				
PB7A	2		Т	P9		N9		
PB7B	2		С	P10		M9		
PB7C	2		Т	T10	60			
PB7D	2		С	T11				
PB7E	2		Т	R11	61	N10		
PB7F	2		С	R12		P10		
PB8A	2		Т	P11	62			
VCCIO2	2			VCCIO2	63	M10	P10	41
GNDIO2	2			GND	64	N11	N10	42
PB8B	2		С	P12			P11	43
PB8C	2	1	Т	T13	65	P11	N11	44
PB8D	2		С	T12	66	M11	P12	45
PB9A	2		Т	R13	67		N12	46
PB9B	2		С	R14	69			
PB9C	2		T	T14	68	P12	P13	47
PB9D	2		С	T15	71	P13	P14	49
SLEEPN				P13	70	N12	M12	48
PB9F	2			P14	72	P14	N13	50
VCCIO2	2			VCCIO2				
GNDIO2	2			GND				
	2							
	1							
GNDIO1	1			GND				
VCCIO1	1			VCCIO1				
PR11D	1		С	N14	73	N14	N14	51
PR11C	1		T	N15	75	M14	L13	53
PR11B	1		С	L13	74	N13	M14	52
PR11A	1		T	L12	77	M12	L14	54
PR10D	1		С	N16	76		M13	55
PR10C	1		Т	M16	79		K14	56
PR10B	<u>·</u> 1		C	M14	78	M13	K13	57
PR10A	1	+	T	L14	80	L14	J14	58
PR9D	1		C	M15	81		J13	59
VCCIO1	<u>·</u> 1		-	VCCIO1	82	L12	H14	60
PR9C	<u>·</u> 1	+	T	L15				
PR9B	<u>·</u> 1	+	 C	L16			H13	61
GNDIO1	1	+		GND	83	L13	G14	62
PR9A	1		T	K16	84			<u> </u>
PR8D	<u>·</u> 1	+	C	K13		K14		
1 1100	'			1010		1314		

Ball Function	Bank	Dual Function	LVDS	256fpBPA	144 TQFP	132 csBGA	100 csBGA	100 TQFP
PR8C	1		Т	J13	85	K13		
PR8B	1		С	K14		K12		
PR8A	1		Т	J14	86	J13		
PR7D	1		С	K15	87			
GND	1			GND	88	J14		
PR7C	1		Т	J15		J12		
PR7B	1		С	J16	89	H14	G13	63
PR7A	1		Т	H16	90	H13		
	1							
PR6D	1		С	H13	91	H12		
PR6C	1		Т	H12	92	G13	F14	64
PR6B	1		С	H15		G14	F13	65
VCC	1			VCC	93	G12		
PR6A	1		Т	G15				
PR5D	1		С	H14	94	F14	E14	66
PR5C	1		Т	G14		F13		
PR5B	1		С	G16	95		E13	67
PR5A	1		Т	F16				
PR4D	1		С	G13	96	F12	D14	68
PR4C	1		Т	G12		E13		
PR4B	1		С	F15	97	E14	D13	69
VCCIO1	1			VCCIO1	98	E12		
GNDIO1	1			GND	99	D13		
PR4A	1		Т	E15	100			
PR3D	1		С	F14	101	D14	C14	70
PR3C	1		Т	E14	102	D12		
PR3B	1		С	E16	103		C13	71
PR3A	1		Т	D16	105			
PR2D	1		С	D15	104	C14	B14	72
PR2C	1		Т	C15	107	B14		
PR2B	1		С	C16	106	C13	C12	73
PR2A	1		Т	B16	108	A14		
VCCIO1	1			VCCIO1			A14	74
GNDIO1	1			GND			B13	75
	1							
	0							
GNDIO0	0			GND				
VCCIO0	0			VCCIO0				
PT9F	0		С	C13	109	A13	A13	76
PT9E	0		Т	B13	111	A12	A12	77
PT9D	0		С	D12	110	B13		
PT9C	0		Т	D11	113	B12	B11	78

Ball Function	Bank	Dual Function	LVDS	256fpBPA	144 TQFP	132 csBGA	100 csBGA	100 TQFP
PT9B	0		С	E9	112	C12		
PT9A	0		Т	E8	114	A11	A11	79
PT8D	0		С	D10				
PT8C	0		Т	D9	115	C11		
PT8B	0		С	C12	116			
VCCIO0	0			VCCIO0	117	B11	B12	80
GNDIO0	0			GND	118	A10	A10	81
PT8A	0		T	C11	119			
PT7F	0		С	A14		B10		
PT7E	0		Т	A13	120	C10	B10	82
PT7D	0		С	A12				
PT7C	0		Т	A11	121			
PT7B	0		С	B12		B9		
PT7A	0		Т	B11	122	A9	A9	83
PT6D	0		С	C10				
GND	0			GND	123	C9	B9	84
PT6C	0		Т	C9				
PT6B	0	PCLKT0_1	С	A9	124	A8	A8	85
PT6A	0		Т	A10	125	B8		
PT5D	0		С	B10				
PT5C	0		Т	В9	126			
PT5B	0	PCLKT0_0	С	D7	127	C8	B8	86
PT5A	0		Т	D8		B7	A7	87
VCCAUX	0			A8	128	A7	B7	88
PT4F	0		С	C8			A6	89
VCC	0			VCC	129	C7	B6	90
PT4E	0		Т	B8				
PT4D	0		С	A7	130	A6		
PT4C	0		Т	A6		B6		
PT4B	0		С	B7	131			
PT4A	0		Т	B6	132			
PT3F	0		С	A4	133	C6	A 5	91
PT3E	0		Т	A5		B5		
PT3D	0		С	C7	134	A5		
VCCIO0	0			VCCIO0	135	C5	B5	92
GNDIO0	0			GND	136	B4	A4	93
PT3C	0		Т	C6				
PT3B	0		С	B5	137	A4	B4	94
PT3A	0		Т	B4	139		A3	95
PT2F	0		С	C5	138	C4	B3	96
PT2E	0		Т	C4	141		A2	97
PT2D	0		С	D5	140	A3		

Ball Function	Bank	Dual Function	LVDS	256fpBPA	144 TQFP	132 csBGA	100 csBGA	100 TQFP
PT2C	0		Т	D6	143	A2	A1	99
PT2B	0		С	A3	142	В3	C3	98
PT2A	0		Т	A2	144	A1	B2	100
VCCIO0	0			VCCIO0				
GNDIO0	0			GND				

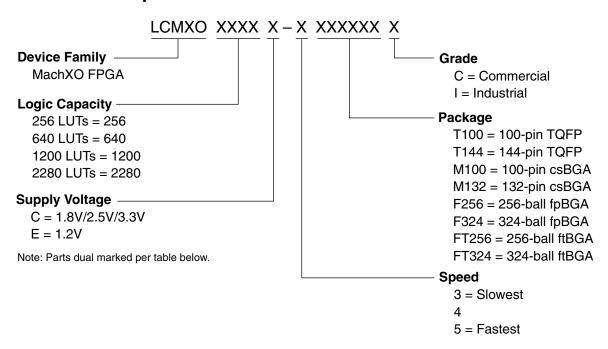
LCMXO256 Logic Signal Connections: 100 csBGA and 100 TQFP

Ball Function	Bank	Dual Function	LVDS	100 csBGA	100 TQFP
PL2A	1		Т	B1	1
PL2B	1		С	C1	2
PL3A	1		Т	D2	3
	1				
PL3B	1		С	D1	4
PL3C	1		Т	C2	5
PL3D	1		С	E1	6
PL4A	1		Т	E2	7
PL4B	1		С	F1	8
PL5A	1		Т	F2	9
VCCIO1	1			G1	10
PL5B	1		С	G2	11
GNDIO1	1			H1	12
PL5C	1		Т	H2	13
PL5D	1	GSRN	С	J1	14
PL6A	1		Т	J2	15
PL6B	1	TSALL	С	K1	16
PL7A	1		Т	K2	17
PL7B	1		С	L1	18
PL7C	1		Т	L2	19
PL7D	1		С	M1	20
PL8A	1		Т	M2	21
PL8B	1		С	N1	22
PL9A	1		Т	M3	23
VCCIO1	1			P1	24
GNDIO1	1			N2	25
TMS	1	TMS		P2	26
	1				
	1				
PL9B	1		С	P3	27
TCK	1	TCK		N4	28
PB2A	1		Т	P4	29
PB2B	1		С	N3	30
TDO	1	TDO		P5	31
PB2C	1		Т	N5	32
TDI	1	TDI		P6	33
PB2D	1		С	N6	34
VCC	1			P7	35
PB3A	1	PCLKT1_1	Т	N7	36
PB3B	1		С	P8	37
PB3C	1	PCLKT1_0	Т	N8	38
PB3D	1		С	P9	39
GND	1			N9	40

LCMXO256 Logic Signal Connections: 100 csBGA and 100 TQFP (Cont.)

Ball Function	Bank	Dual Function	LVDS	100 csBGA	100 TQFP
VCCIO1	1			P10	41
GNDIO1	1			N10	42
PB4A	1		Т	P11	43
PB4B	1		С	N11	44
PB4C	1		Т	P12	45
PB4D	1		С	N12	46
PB5A	1			P13	47
SLEEPN				M12	48
	1				
PB5C	1		Т	P14	49
PB5D	1		С	N13	50
	1				
PR9B	0		С	N14	51
PR9A	0		Т	M14	52
PR8B	0		С	L13	53
	0				
PR8A	0		T	L14	54
PR7D	0		С	M13	55
PR7C	0		T	K14	56
PR7B	0		С	K13	57
PR7A	0		Т	J14	58
PR6B	0		С	J13	59
VCCIO0	0			H14	60
PR6A	0		Т	H13	61
GNDIO0	0			G14	62
PR5D	0		С	G13	63
PR5C	0		Т	F14	64
PR5B	0		С	F13	65
PR5A	0		Т	E14	66
PR4B	0		С	E13	67
PR4A	0		Т	D14	68
PR3D	0		C	D13	69
PR3C	0		T T	C14	70
PR3B	0		C	C13	71
PR3A	0		T	B14	72
PR2B	0		C	C12	73
VCCIO0	0		·	A14	74
GNDIO0	0			B13	75
PR2A	0		Т	A13	76
	0		•	15	- -
	0				
PT5D	0				
PT5C	0			A12	77
PT5B	0		С	B11	78

LCMXO256 Logic Signal Connections: 100 csBGA and 100 TQFP (Cont.)


Ball Function	Bank	Dual Function	LVDS	100 csBGA	100 TQFP
PT5A	0		Т	A11	79
PT4F	0		С	B12	80
PT4E	0		Т	A10	81
PT4D	0		С	B10	82
PT4C	0		Т	A9	83
GND	0			B9	84
PT4B	0	PCLKT0_1	С	A8	85
PT4A	0	PCLKT0_0	Т	B8	86
PT3D	0		С	A7	87
VCCAUX	0			B7	88
PT3C	0		Т	A6	89
VCC	0			B6	90
PT3B	0		С	A5	91
VCCIO0	0			B5	92
GNDIO0	0			A4	93
PT3A	0		Т	B4	94
PT2F	0		С	A3	95
PT2E	0		Т	B3	96
PT2D	0		С	A2	97
PT2C	0		Т	C3	98
PT2B	0		С	A1	99
PT2A	0		Т	B2	100
	0				

MachXO Family Data Sheet Ordering Information

July 2005 Advance Data Sheet

Part Number Description

Ordering Information

Note: MachXO devices are dual marked. For example, the commercial speed grade LCMXO640E-4F256C is also marked with industrial grade -3I (LCMXO640E-3F256I). The commercial grade is one speed grade faster than the associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings. The markings appear as follows:

Conventional Packaging

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3T100C	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	COM
LCMXO256C-4T100C	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	COM
LCMXO256C-5T100C	256	1.8V/2.5V/3.3V	78	-5	TQFP	100	COM
LCMXO256C-3M100C	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	COM
LCMXO256C-4M100C	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	COM
LCMXO256C-5M100C	256	1.8V/2.5V/3.3V	78	-5	csBGA	100	COM

© 2005 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100C	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	COM
LCMXO640C-4T100C	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	COM
LCMXO640C-5T100C	640	1.8V/2.5V/3.3V	74	-5	TQFP	100	COM
LCMXO640C-3M100C	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	COM
LCMXO640C-4M100C	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	COM
LCMXO640C-5M100C	640	1.8V/2.5V/3.3V	74	-5	csBGA	100	COM
LCMXO640C-3T144C	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO640C-4T144C	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO640C-5T144C	640	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO640C-3M132C	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO640C-4M132C	640	1.8V/2.5V/3.3V	10	-4	csBGA	132	COM
LCMXO640C-5M132C	640	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO640C-3F256C	640	1.8V/2.5V/3.3V	159	-3	fpBGA	256	COM
LCMXO640C-4F256C	640	1.8V/2.5V/3.3V	159	-4	fpBGA	256	COM
LCMXO640C-5F256C	640	1.8V/2.5V/3.3V	159	-5	fpBGA	256	СОМ

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100C	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	СОМ
LCMXO1200C-4T100C	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	СОМ
LCMXO1200C-5T100C	1200	1.8V/2.5V/3.3V	73	-5	TQFP	100	СОМ
LCMXO1200C-3T144C	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	СОМ
LCMXO1200C-4T144C	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	СОМ
LCMXO1200C-5T144C	1200	1.8V/2.5V/3.3V	113	-5	TQFP	144	СОМ
LCMXO1200C-3M132C	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	СОМ
LCMXO1200C-4M132C	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	СОМ
LCMXO1200C-5M132C	1200	1.8V/2.5V/3.3V	101	-5	csBGA	132	СОМ
LCMXO1200C-3FT256C	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	СОМ
LCMXO1200C-4FT256C	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	СОМ
LCMXO1200C-5FT256C	1200	1.8V/2.5V/3.3V	211	-5	ftBGA	256	СОМ

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100C	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	COM
LCMXO2280C-4T100C	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	COM
LCMXO2280C-5T100C	2280	1.8V/2.5V/3.3V	73	-5	TQFP	100	COM
LCMXO2280C-3T144C	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	COM
LCMXO2280C-4T144C	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	COM
LCMXO2280C-5T144C	2280	1.8V/2.5V/3.3V	113	-5	TQFP	144	COM
LCMXO2280C-3M132C	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	COM
LCMXO2280C-4M132C	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	COM
LCMXO2280C-5M132C	2280	1.8V/2.5V/3.3V	101	-5	csBGA	132	COM
LCMXO2280C-3FT256C	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	COM
LCMXO2280C-4FT256C	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	COM
LCMXO2280C-5FT256C	2280	1.8V/2.5V/3.3V	211	-5	ftBGA	256	COM
LCMXO2280C-3FT324C	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	COM
LCMXO2280C-4FT324C	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	COM
LCMXO2280C-5FT324C	2280	1.8V/2.5V/3.3V	271	-5	ftBGA	324	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100C	256	1.2V	78	-3	TQFP	100	COM
LCMXO256E-4T100C	256	1.2V	78	-4	TQFP	100	COM
LCMXO256E-5T100C	256	1.2V	78	-5	TQFP	100	COM
LCMXO256E-3M100C	256	1.2V	78	-3	csBGA	100	COM
LCMXO256E-4M100C	256	1.2V	78	-4	csBGA	100	COM
LCMXO256E-5M100C	256	1.2V	78	-5	csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100C	640	1.2V	74	-3	TQFP	100	COM
LCMXO640E-4T100C	640	1.2V	74	-4	TQFP	100	COM
LCMXO640E-5T100C	640	1.2V	74	-5	TQFP	100	COM
LCMXO640E-3M100C	640	1.2V	74	-3	csBGA	100	COM
LCMXO640E-4M100C	640	1.2V	74	-4	csBGA	100	COM
LCMXO640E-5M100C	640	1.2V	74	-5	csBGA	100	COM
LCMXO640E-3T144C	640	1.2V	113	-3	TQFP	144	COM
LCMXO640E-4T144C	640	1.2V	113	-4	TQFP	144	COM
LCMXO640E-5T144C	640	1.2V	113	-5	TQFP	144	COM
LCMXO640E-3M132C	640	1.2V	101	-3	csBGA	132	COM
LCMXO640E-4M132C	640	1.2V	101	-4	csBGA	132	COM
LCMXO640E-5M132C	640	1.2V	101	-5	csBGA	132	COM
LCMXO640E-3F256C	640	1.2V	159	-3	fpBGA	256	COM
LCMXO640E-4F256C	640	1.2V	159	-4	fpBGA	256	COM
LCMXO640E-5F256C	640	1.2V	159	-5	fpBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100C	1200	1.2V	73	-3	TQFP	100	COM
LCMXO1200E-4T100C	1200	1.2V	73	-4	TQFP	100	COM
LCMXO1200E-5T100C	1200	1.2V	73	-5	TQFP	100	COM
LCMXO1200E-3T144C	1200	1.2V	113	-3	TQFP	144	COM
LCMXO1200E-4T144C	1200	1.2V	113	-4	TQFP	144	COM
LCMXO1200E-5T144C	1200	1.2V	113	-5	TQFP	144	COM
LCMXO1200E-3M132C	1200	1.2V	101	-3	csBGA	132	COM
LCMXO1200E-4M132C	1200	1.2V	101	-4	csBGA	132	COM
LCMXO1200E-5M132C	1200	1.2V	101	-5	csBGA	132	COM
LCMXO1200E-3FT256C	1200	1.2V	211	-3	ftBGA	256	COM
LCMXO1200E-4FT256C	1200	1.2V	211	-4	ftBGA	256	COM
LCMXO1200E-5FT256C	1200	1.2V	211	-5	ftBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100C	2280	1.2V	73	-3	TQFP	100	COM
LCMXO2280E-4T100C	2280	1.2V	73	-4	TQFP	100	COM
LCMXO2280E-5T100C	2280	1.2V	73	-5	TQFP	100	COM
LCMXO2280E-3T144C	2280	1.2V	113	-3	TQFP	144	COM
LCMXO2280E-4T144C	2280	1.2V	113	-4	TQFP	144	COM
LCMXO2280E-5T144C	2280	1.2V	113	-5	TQFP	144	COM
LCMXO2280E-3M132C	2280	1.2V	101	-3	csBGA	132	COM
LCMXO2280E-4M132C	2280	1.2V	101	-4	csBGA	132	COM
LCMXO2280E-5M132C	2280	1.2V	101	-5	csBGA	132	COM
LCMXO2280E-3FT256C	2280	1.2V	211	-3	ftBGA	256	COM
LCMXO2280E-4FT256C	2280	1.2V	211	-4	ftBGA	256	COM
LCMXO2280E-5FT256C	2280	1.2V	211	-5	ftBGA	256	COM
LCMXO2280E-3FT324C	2280	1.2V	271	-3	ftBGA	324	COM
LCMXO2280E-4FT324C	2280	1.2V	271	-4	ftBGA	324	COM
LCMXO2280E-5FT324C	2280	1.2V	271	-5	ftBGA	324	COM

Industrial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3T100I	256	1.8V/2.5V/3.3V	78	-3	TQFP	100	IND
LCMXO256C-4T100I	256	1.8V/2.5V/3.3V	78	-4	TQFP	100	IND
LCMXO256C-3M100I	256	1.8V/2.5V/3.3V	78	-3	csBGA	100	IND
LCMXO256C-4M100I	256	1.8V/2.5V/3.3V	78	-4	csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3T100I	640	1.8V/2.5V/3.3V	74	-3	TQFP	100	IND
LCMXO640C-4T100I	640	1.8V/2.5V/3.3V	74	-4	TQFP	100	IND
LCMXO640C-3M100I	640	1.8V/2.5V/3.3V	74	-3	csBGA	100	IND
LCMXO640C-4M100I	640	1.8V/2.5V/3.3V	74	-4	csBGA	100	IND
LCMXO640C-3T144I	640	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO640C-4T144I	640	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO640C-3M132I	640	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO640C-4M132I	640	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO640C-3F256I	640	1.8V/2.5V/3.3V	159	-3	fpBGA	256	IND
LCMXO640C-4F256I	640	1.8V/2.5V/3.3V	159	-4	fpBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3T100I	1200	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO1200C-4T100I	1200	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO1200C-3T144I	1200	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO1200C-4T144I	1200	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO1200C-3M132I	1200	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO1200C-4M132I	1200	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO1200C-3FT256I	1200	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO1200C-4FT256I	1200	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3T100I	2280	1.8V/2.5V/3.3V	73	-3	TQFP	100	IND
LCMXO2280C-4T100I	2280	1.8V/2.5V/3.3V	73	-4	TQFP	100	IND
LCMXO2280C-3T144I	2280	1.8V/2.5V/3.3V	113	-3	TQFP	144	IND
LCMXO2280C-4T144I	2280	1.8V/2.5V/3.3V	113	-4	TQFP	144	IND
LCMXO2280C-3M132I	2280	1.8V/2.5V/3.3V	101	-3	csBGA	132	IND
LCMXO2280C-4M132I	2280	1.8V/2.5V/3.3V	101	-4	csBGA	132	IND
LCMXO2280C-3FT256I	2280	1.8V/2.5V/3.3V	211	-3	ftBGA	256	IND
LCMXO2280C-4FT256I	2280	1.8V/2.5V/3.3V	211	-4	ftBGA	256	IND
LCMXO2280C-3FT324I	2280	1.8V/2.5V/3.3V	271	-3	ftBGA	324	IND
LCMXO2280C-4FT324I	2280	1.8V/2.5V/3.3V	271	-4	ftBGA	324	IND

Industrial (Cont.)

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3T100I	256	1.2V	78	-3	TQFP	100	IND
LCMXO256E-4T100I	256	1.2V	78	-4	TQFP	100	IND
LCMXO256E-3M100I	256	1.2V	78	-3	csBGA	100	IND
LCMXO256E-4M100I	256	1.2V	78	-4	csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3T100I	640	1.2V	74	-3	TQFP	100	IND
LCMXO640E-4T100I	640	1.2V	74	-4	TQFP	100	IND
LCMXO640E-3T144I	640	1.2V	113	-3	TQFP	144	IND
LCMXO640E-4T144I	640	1.2V	113	-4	TQFP	144	IND
LCMXO640E-3M132I	640	1.2V	101	-3	csBGA	132	IND
LCMXO640E-4M132I	640	1.2V	101	-4	csBGA	132	IND
LCMXO640E-3F256I	640	1.2V	159	-3	fpBGA	256	IND
LCMXO640E-4F256I	640	1.2V	159	-4	fpBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3T100I	1200	1.2V	73	-3	TQFP	100	IND
LCMXO1200E-4T100I	1200	1.2V	73	-4	TQFP	100	IND
LCMXO1200E-3T144I	1200	1.2V	113	-3	TQFP	144	IND
LCMXO1200E-4T144I	1200	1.2V	113	-4	TQFP	144	IND
LCMXO1200E-3M132I	1200	1.2V	101	-3	csBGA	132	IND
LCMXO1200E-4M132I	1200	1.2V	101	-4	csBGA	132	IND
LCMXO1200E-3FT256I	1200	1.2V	211	-3	ftBGA	256	IND
LCMXO1200E-4FT256I	1200	1.2V	211	-4	ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3T100I	2280	1.2V	73	-3	TQFP	100	IND
LCMXO2280E-4T100I	2280	1.2V	73	-4	TQFP	100	IND
LCMXO2280E-3M100I	2280	1.2V	73	-3	csBGA	100	IND
LCMXO2280E-4M100I	2280	1.2V	73	-4	csBGA	100	IND
LCMXO2280E-3T144I	2280	1.2V	113	-3	TQFP	144	IND
LCMXO2280E-4T144I	2280	1.2V	113	-4	TQFP	144	IND
LCMXO2280E-3M132I	2280	1.2V	101	-3	csBGA	132	IND
LCMXO2280E-4M132I	2280	1.2V	101	-4	csBGA	132	IND
LCMXO2280E-3FT256I	2280	1.2V	211	-3	ftBGA	256	IND
LCMXO2280E-4FT256I	2280	1.2V	211	-4	ftBGA	256	IND
LCMXO2280E-3FT324I	2280	1.2V	271	-3	ftBGA	324	IND
LCMXO2280E-4FT324I	2280	1.2V	271	-4	ftBGA	324	IND

Lead-Free Packaging

Commercial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	СОМ
LCMXO256C-4TN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	СОМ
LCMXO256C-5TN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free TQFP	100	СОМ
LCMXO256C-3MN100C	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	СОМ
LCMXO256C-4MN100C	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	СОМ
LCMXO256C-5MN100C	256	1.8V/2.5V/3.3V	78	-5	Lead-Free csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	COM
LCMXO640C-4TN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	COM
LCMXO640C-5TN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free TQFP	100	COM
LCMXO640C-3MN100C	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	COM
LCMXO640C-4MN100C	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	COM
LCMXO640C-5MN100C	640	1.8V/2.5V/3.3V	74	-5	Lead-Free csBGA	100	COM
LCMXO640C-3TN144C	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO640C-4TN144C	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO640C-5TN144C	640	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO640C-3MN132C	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO640C-4MN132C	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	СОМ
LCMXO640C-5MN132C	640	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	СОМ
LCMXO640C-3FN256C	640	1.8V/2.5V/3.3V	159	-3	Lead-Free fpBGA	256	СОМ
LCMXO640C-4FN256C	640	1.8V/2.5V/3.3V	159	-4	Lead-Free fpBGA	256	СОМ
LCMXO640C-5FN256C	640	1.8V/2.5V/3.3V	159	-5	Lead-Free fpBGA	256	СОМ

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100C	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200C-4TN100C	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200C-5TN100C	1200	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	COM
LCMXO1200C-3TN144C	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200C-4TN144C	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200C-5TN144C	1200	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO1200C-3MN132C	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO1200C-4MN132C	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200C-5MN132C	1200	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100C	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280C-4TN100C	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	СОМ
LCMXO2280C-5TN100C	2280	1.8V/2.5V/3.3V	73	-5	Lead-Free TQFP	100	СОМ
LCMXO2280C-3TN144C	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280C-4TN144C	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	СОМ
LCMXO2280C-5TN144C	2280	1.8V/2.5V/3.3V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280C-3MN132C	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280C-4MN132C	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280C-5MN132C	2280	1.8V/2.5V/3.3V	101	-5	Lead-Free csBGA	132	СОМ

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100C	256	1.2V	78	-3	Lead-Free TQFP	100	COM
LCMXO256E-4TN100C	256	1.2V	78	-4	Lead-Free TQFP	100	COM
LCMXO256E-5TN100C	256	1.2V	78	-5	Lead-Free TQFP	100	COM
LCMXO256E-3MN100C	256	1.2V	78	-3	Lead-Free csBGA	100	COM
LCMXO256E-4MN100C	256	1.2V	78	-4	Lead-Free csBGA	100	COM
LCMXO256E-5MN100C	256	1.2V	78	-5	Lead-Free csBGA	100	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100C	640	1.2V	74	-3	Lead-Free TQFP	100	СОМ
LCMXO640E-4TN100C	640	1.2V	74	-4	Lead-Free TQFP	100	СОМ
LCMXO640E-5TN100C	640	1.2V	74	-5	Lead-Free TQFP	100	COM
LCMXO640E-3MN100C	640	1.2V	74	-3	Lead-Free csBGA	100	COM
LCMXO640E-4MN100C	640	1.2V	74	-4	Lead-Free csBGA	100	COM
LCMXO640E-5MN100C	640	1.2V	74	-5	Lead-Free csBGA	100	COM
LCMXO640E-3TN144C	640	1.2V	113	-3	Lead-Free TQFP	144	СОМ
LCMXO640E-4TN144C	640	1.2V	113	-4	Lead-Free TQFP	144	СОМ
LCMXO640E-5TN144C	640	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO640E-3MN132C	640	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO640E-4MN132C	640	1.2V	101	-4	Lead-Free csBGA	132	СОМ
LCMXO640E-5MN132C	640	1.2V	101	-5	Lead-Free csBGA	132	COM
LCMXO640E-3FN256C	640	1.2V	159	-3	Lead-Free fpBGA	256	СОМ
LCMXO640E-4FN256C	640	1.2V	159	-4	Lead-Free fpBGA	256	СОМ
LCMXO640E-5FN256C	640	1.2V	159	-5	Lead-Free fpBGA	256	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100C	1200	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO1200E-4TN100C	1200	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO1200E-5TN100C	1200	1.2V	73	-5	Lead-Free TQFP	100	СОМ
LCMXO1200E-3TN144C	1200	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO1200E-4TN144C	1200	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO1200E-5TN144C	1200	1.2V	113	-5	Lead-Free TQFP	144	СОМ
LCMXO1200E-3MN132C	1200	1.2V	101	-3	Lead-Free csBGA	132	СОМ
LCMXO1200E-4MN132C	1200	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO1200E-5MN132C	1200	1.2V	101	-5	Lead-Free csBGA	132	COM

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100C	2280	1.2V	73	-3	Lead-Free TQFP	100	COM
LCMXO2280E-4TN100C	2280	1.2V	73	-4	Lead-Free TQFP	100	COM
LCMXO2280E-5TN100C	2280	1.2V	73	-5	Lead-Free TQFP	100	COM
LCMXO2280E-3TN144C	2280	1.2V	113	-3	Lead-Free TQFP	144	COM
LCMXO2280E-4TN144C	2280	1.2V	113	-4	Lead-Free TQFP	144	COM
LCMXO2280E-5TN144C	2280	1.2V	113	-5	Lead-Free TQFP	144	COM
LCMXO2280E-3MN132C	2280	1.2V	101	-3	Lead-Free csBGA	132	COM
LCMXO2280E-4MN132C	2280	1.2V	101	-4	Lead-Free csBGA	132	COM
LCMXO2280E-5MN132C	2280	1.2V	101	-5	Lead-Free csBGA	132	СОМ

Industrial

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256C-3TN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free TQFP	100	IND
LCMXO256C-4TN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free TQFP	100	IND
LCMXO256C-3MN100I	256	1.8V/2.5V/3.3V	78	-3	Lead-Free csBGA	100	IND
LCMXO256C-4MN100I	256	1.8V/2.5V/3.3V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640C-3TN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free TQFP	100	IND
LCMXO640C-4TN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free TQFP	100	IND
LCMXO640C-3MN100I	640	1.8V/2.5V/3.3V	74	-3	Lead-Free csBGA	100	IND
LCMXO640C-4MN100I	640	1.8V/2.5V/3.3V	74	-4	Lead-Free csBGA	100	IND
LCMXO640C-3TN144I	640	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO640C-4TN144I	640	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO640C-3MN132I	640	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO640C-4MN132I	640	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND
LCMXO640C-3FN256I	640	1.8V/2.5V/3.3V	159	-3	Lead-Free fpBGA	256	IND
LCMXO640C-4FN256I	640	1.8V/2.5V/3.3V	159	-4	Lead-Free fpBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200C-3TN100I	1200	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200C-4TN100I	1200	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200C-3TN144I	1200	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200C-4TN144I	1200	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200C-3MN132I	1200	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200C-4MN132I	1200	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280C-3TN100I	2280	1.8V/2.5V/3.3V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280C-4TN100I	2280	1.8V/2.5V/3.3V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280C-3TN144I	2280	1.8V/2.5V/3.3V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280C-4TN144I	2280	1.8V/2.5V/3.3V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280C-3MN132I	2280	1.8V/2.5V/3.3V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280C-4MN132I	2280	1.8V/2.5V/3.3V	101	-4	Lead-Free csBGA	132	IND

Industrial (Cont.)

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO256E-3TN100I	256	1.2V	78	-3	Lead-Free TQFP	100	IND
LCMXO256E-4TN100I	256	1.2V	78	-4	Lead-Free TQFP	100	IND
LCMXO256E-3MN100I	256	1.2V	78	-3	Lead-Free csBGA	100	IND
LCMXO256E-4MN100I	256	1.2V	78	-4	Lead-Free csBGA	100	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO640E-3TN100I	640	1.2V	74	-3	Lead-Free TQFP	100	IND
LCMXO640E-4TN100I	640	1.2V	74	-4	Lead-Free TQFP	100	IND
LCMXO640E-3TN144I	640	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO640E-4TN144I	640	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO640E-3MN132I	640	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO640E-4MN132I	640	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO640E-3FN256I	640	1.2V	159	-3	Lead-Free fpBGA	256	IND
LCMXO640E-4FN256I	640	1.2V	159	-4	Lead-Free fpBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO1200E-3TN100I	1200	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO1200E-4TN100I	1200	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO1200E-3TN144I	1200	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO1200E-4TN144I	1200	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO1200E-3MN132I	1200	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO1200E-4MN132I	1200	1.2V	101	-4	Lead-Free csBGA	132	IND
LCMXO1200E-3FTN256I	1200	1.2V	211	-3	Lead-Free ftBGA	256	IND
LCMXO1200E-4FTN256I	1200	1.2V	211	-4	Lead-Free ftBGA	256	IND

Part Number	LUTs	Supply Voltage	I/Os	Grade	Package	Pins	Temp.
LCMXO2280E-3TN100I	2280	1.2V	73	-3	Lead-Free TQFP	100	IND
LCMXO2280E-4TN100I	2280	1.2V	73	-4	Lead-Free TQFP	100	IND
LCMXO2280E-3MN100I	2280	1.2V	73	-3	Lead-Free csBGA	100	IND
LCMXO2280E-4MN100I	2280	1.2V	73	-4	Lead-Free csBGA	100	IND
LCMXO2280E-3TN144I	2280	1.2V	113	-3	Lead-Free TQFP	144	IND
LCMXO2280E-4TN144I	2280	1.2V	113	-4	Lead-Free TQFP	144	IND
LCMXO2280E-3MN132I	2280	1.2V	101	-3	Lead-Free csBGA	132	IND
LCMXO2280E-4MN132I	2280	1.2V	101	-4	Lead-Free csBGA	132	IND

MachXO Family Data Sheet Supplemental Information

July 2005 Advance Data Sheet

For Further Information

A variety of technical notes for the MachXO family are available on the Lattice web site at www.latticesemi.com.

- MachXO sysIO Usage Guide (TN1091)
- MachXO sysCLOCK PLL Design and Usage Guide (TN1089)
- MachXO Memory Usage Guide (TN1092)
- Power Calculations and Considerations for MachXO Devices (TN1090)
- MachXO JTAG Programming and Configuration User's Guide (TN1086)
- Minimizing System Interruption During Configuration Using TransFR Technology (TN1087)
- IEEE 1149.1 Boundary Scan Testability in Lattice Devices

For further information on interface standards refer to the following web sites:

- JEDEC Standards (LVTTL, LVCMOS): www.jedec.org
- PCI: www.pcisig.com